Tối ưu hóa ước tính mức tiêu thụ năng lượng trong các tòa nhà dựa trên các thuật toán trí tuệ nhân tạo
Tác giả: Trần Đức Học, Lê Tấn TàiTóm tắt:
Mô phỏng và dự báo năng lượng tiêu thụ đóng vai trò quan trọng trong việc thiết lập chính sách năng lượngvà đưa ra quyết định theo hướng phát triển bền vững. Nghiên cứu này sử dụng phương pháp kỹ thuật thốngkê và công cụ trí tuệ nhân tạo bao gồm mạng nơ-ron thần kinh (ANNs – Artificial neutral networks), máy hỗtrợ véc tơ (SVM – Support vector machine), cây phân loại và hồi quy (CART - Classification and regressiontrees), hồi quy tuyến tính (LR - Linear regression), hồi quy tuyến tính tổng quát (GENLIN - Generalized linearregression), tự động phát hiện tương tác Chi-squared (CHAID - Chi-square automatic interaction detector) vàmô hình tổng hợp (Ensemble model) để dự đoán mức tiêu thụ năng lượng trong các căn hộ tòa nhà chung cư.Bộ dữ liệu để xây dựng mô hình gồm 200 mẫu được khảo sát ở nhiều chung cư tại TP. Hồ Chí Minh. Mô hìnhđơn có hiệu quả tốt nhất trong quá trình dự đoán là CART, trong khi đó mô hình được tổng hợp tốt nhất làCART + GENLIN.
- Nghiên cứu thiết kế mặt cắt ngang hầm đô thị và hầm ngoài đô thị đáp ứng điều kiện an toàn giao thông
- Phân tích ảnh hưởng của liên kết ngang đến dao động của cầu dầm chịu hoạt tải xe di động
- Tổ chức và quản lý hợp đồng dự án Thiết kế - Đấu thầu - Xây dựng
- Study on using rice husk ash from ceramic kiln as a partial alternative for cement in mortar = Nghiên cứu sử dụng tro trấu từ lò nung gốm để thay thế một phần xi măng trong vữa
- Xác định nguyên nhân gây chậm trễ tiến độ trong xây dựng nhà máy công nghiệp : nghiên cứu trường hợp tại Bình Dương, Việt Nam