XGBoost regression for estimating bearing capacity of concrete piles = Sử dụng hồi quy XGBoost để đánh giá sức chịu tải của cọc bê tông
Tác giả: Tran Thu Hien, Hoang Nhat Duc
Số trang:
P. 3-11
Số phát hành:
Số 03(58)
Kiểu tài liệu:
Tạp chí trong nước
Nơi lưu trữ:
03 Quang Trung
Mã phân loại:
690
Ngôn ngữ:
Tiếng Anh
Từ khóa:
Pile bearing capacity, machine learning, XGBoost
Chủ đề:
Conctere construction
Tóm tắt:
This paper uses XGBoost to predict bearing capacity of concrete piles. The proposed model is trained and tested against a dataset of 472 samples collected from static load tests in Vietnam. The results indicate that the default XGBoost model consistently outperforms the Deep Neural Network (DNN) regression. XGBoost is a suitable tool for engineers to predict pile bearing capacity.
Tạp chí liên quan
- Training artificial neural network regression based on the generalized delta rule : a case study in modeling the compressive strength of concrete = Huấn luyện mạng nơ-ron thần kinh nhân tạo dùng cho phân tích hồi quy dựa trên quy tắc delta khái quát: ứng
- Training deep neural network for regression analysis with the generalized delta rule : a case study in modeling the shear strength of soil = Huấn luyện mạng nơ-ron thần kinh nhân tạo sâu dùng cho phân tích hồi quy dựa trên quy tắc delta khái quát: ứng dụn
- Linear regression models for predicting the compressive strength of rice husk ash-blended concrete = Ứng dụng các mô hình hồi quy tuyến tính cho việc dự báo cường độ chịu nén của bê tông có chứa tro trấu
- Applications of Google OR-Tools in solving construction management linear optimization problems = Ứng dụng công cụ Google OR-Tools trong giải các bài toán tối ưu hóa tuyến tính trong quản lý dự án xây dựng
- Experimental study on influence of rice husk ash on mortar compressive strength at different temperatures = Nghiên cứu thực nghiệm ảnh hưởng của tro trấu tới cường độ của vữa ở các nhiệt độ khác nhau





