Dự báo độ võng dài hạn của dầm bê tông cốt thép bằng mô hình học máy tối ưu hóa Jellyfish Search
Tác giả: Phạm Công Phương, Trương Đình Nhật, Nguyễn Hữu Anh Tuấn, Lê Thị Thùy Linh
Số trang:
Tr. 112-117
Số phát hành:
Tháng 09
Kiểu tài liệu:
Tạp chí trong nước
Nơi lưu trữ:
03 Quang Trung
Mã phân loại:
690
Ngôn ngữ:
Tiếng Việt
Từ khóa:
Độ võng dài hạn, dầm bê tông cốt thép, Jellyfish Search, mô hình học má, tối ưu hóa
Chủ đề:
Kỹ thuật xây dựng--Dầm
Tóm tắt:
Nghiên cứu này tập trung vào phát triển một mô hình học máy sử dụng thuật toán tối ưu hóa Jellyfish Search để dự báo độ võng dài hạn của dầm bê tông cốt thép. Dựa trên bộ dữ liệu của nghiên cứu đã công bố, các mô hình học máy được xây dựng và đánh giá (bao gồm mô hình đơn và mô hình hỗn hợp) để chọn ra mô hình có độ chính xác cao nhất. Thuật toán tối ưu hóa Jellyfish Search được sử dụng để tối ưu hóa các tham số của mô hình được chọn.
Tạp chí liên quan
- Applications of Google OR-Tools in solving construction management linear optimization problems = Ứng dụng công cụ Google OR-Tools trong giải các bài toán tối ưu hóa tuyến tính trong quản lý dự án xây dựng
- Experimental study on influence of rice husk ash on mortar compressive strength at different temperatures = Nghiên cứu thực nghiệm ảnh hưởng của tro trấu tới cường độ của vữa ở các nhiệt độ khác nhau
- Artificial neural network with adaptive moment estimation training approaches for prediction of punching shear capacity of steel fibre reinforced concrete slabs = Sử dụng mạng nơ-ron thần kinh nhân tạo với phương pháp huấn luyện ước tính mô men tự thích n
- Influence of rice husk ash on mortar compressive strength at different temperatures : machine learning based modelling = Ảnh hưởng của tro trấu tới cường độ của vữa ở các nhiệt độ khác nhau : mô hình hóa bằng máy học
- Image processing-based automatic gradation of stone aggregates = Tự động hóa việc xác định cấp phối hạt của cốt liệu đá sử dụng kỹ thuật xử lý ảnh





