Dự báo độ võng dài hạn của dầm bê tông cốt thép bằng mô hình học máy tối ưu hóa Jellyfish Search
Tác giả: Phạm Công Phương, Trương Đình Nhật, Nguyễn Hữu Anh Tuấn, Lê Thị Thùy Linh
Số trang:
Tr. 112-117
Số phát hành:
Tháng 09
Kiểu tài liệu:
Tạp chí trong nước
Nơi lưu trữ:
03 Quang Trung
Mã phân loại:
690
Ngôn ngữ:
Tiếng Việt
Từ khóa:
Độ võng dài hạn, dầm bê tông cốt thép, Jellyfish Search, mô hình học má, tối ưu hóa
Chủ đề:
Kỹ thuật xây dựng--Dầm
Tóm tắt:
Nghiên cứu này tập trung vào phát triển một mô hình học máy sử dụng thuật toán tối ưu hóa Jellyfish Search để dự báo độ võng dài hạn của dầm bê tông cốt thép. Dựa trên bộ dữ liệu của nghiên cứu đã công bố, các mô hình học máy được xây dựng và đánh giá (bao gồm mô hình đơn và mô hình hỗn hợp) để chọn ra mô hình có độ chính xác cao nhất. Thuật toán tối ưu hóa Jellyfish Search được sử dụng để tối ưu hóa các tham số của mô hình được chọn.
Tạp chí liên quan
- Training artificial neural network regression based on the generalized delta rule : a case study in modeling the compressive strength of concrete = Huấn luyện mạng nơ-ron thần kinh nhân tạo dùng cho phân tích hồi quy dựa trên quy tắc delta khái quát: ứng
- XGBoost regression for estimating bearing capacity of concrete piles = Sử dụng hồi quy XGBoost để đánh giá sức chịu tải của cọc bê tông
- Training deep neural network for regression analysis with the generalized delta rule : a case study in modeling the shear strength of soil = Huấn luyện mạng nơ-ron thần kinh nhân tạo sâu dùng cho phân tích hồi quy dựa trên quy tắc delta khái quát: ứng dụn
- Linear regression models for predicting the compressive strength of rice husk ash-blended concrete = Ứng dụng các mô hình hồi quy tuyến tính cho việc dự báo cường độ chịu nén của bê tông có chứa tro trấu
- Applications of Google OR-Tools in solving construction management linear optimization problems = Ứng dụng công cụ Google OR-Tools trong giải các bài toán tối ưu hóa tuyến tính trong quản lý dự án xây dựng





