Các nhân tố tác động đến rủi ro thanh khoản của các ngân hàng thương mại Việt Nam
Tác giả: Nguyễn Đức Trung, Trần Trọng HuyTóm tắt:
Bài viết đánh giá mức độ tác động của các nhân tố bên trong và bên ngoài ảnh hưởng đến khả năng thanh khoản của các ngân hàng thương mại (NHTM) Việt Nam, dữ liệu quan sát là 30 NHTM thông qua sử dụng thuật toán Multiple linear regression thuộc nhóm Supervised learning của thuật toán học máy (Machine Learning) trên nền tảng Python cho dữ liệu quan sát với kết quả R² ≈ 90% là rất tốt và MSE (Mean squared error) rất nhỏ chứng tỏ sự phù hợp khá tốt của mô hình, cùng việc trực quan hóa dữ liệu qua thư viện Seaborn sẽ cho cái nhìn trực quan về kết quả nghiên cứu. Kết quả mô hình và hệ số hồi quy cho thấy các biến: LTD, ETA, LTA, ROE, NPL có tác động cùng chiều và LIQ, GDP có tác động ngược chiều đến rủi ro thanh khoản của các NHTM Việt Nam trong mẫu nghiên cứu, trong khi các biến LTL, SIZE, INF có tác động không đáng kể đối với mô hình. Qua đó, nhóm tác giả đề xuất khuyến nghị đối với các NHTM Việt Nam để quản lí tốt rủi ro thanh khoản như việc phân bổ nguồn vốn một cách hợp lí trong việc nắm giữ các tài sản thanh khoản để vừa đạt được mục tiêu lợi nhuận trong hoạt động kinh doanh, vừa duy trì tốt khả năng thanh khoản nhằm đối phó với những tác động xấu của thị trường, nâng cao chất lượng nguồn vốn tự có, kiểm soát tốt các khoản cho vay, tăng cường xử lí nợ xấu và nâng cao chất lượng tín dụng, tuân thủ các quy định và đảm bảo an toàn vốn, thanh khoản.
- Đánh giá mức độ an toàn trong hoạt động của các ngân hàng thương mại Việt Nam giai đoạn 2021 - 2023
- Cơ hội và thách thức khi ứng dụng công nghệ chuỗi khối trong ngành ngân hàng
- Khẩu vị rủi ro của các ngân hàng Thương mại Việt Nam
- Ảnh hưởng của số hóa đến biên lãi ròng của Ngân hàng thương mại Việt Nam
- Những thách thức trong hoạt động tín dụng xanh tại các ngân hàng thương mại Việt Nam