Dự đoán cường độ liên kết giữa cốt thép bị ăn mòn và lớp bê tông xung quanh bằng phương pháp XGBoost
Tác giả: Nguyễn Trung Hiếu, Trần Xuân Linh
Số trang:
Tr. 8-15
Tên tạp chí:
Khoa học & Công nghệ Đại học Duy Tân
Số phát hành:
Số 6(49)
Kiểu tài liệu:
Tạp chí trong nước
Nơi lưu trữ:
03 Quang Trung
Mã phân loại:
624
Ngôn ngữ:
Tiếng Việt
Từ khóa:
Bê tông cốt thép, phương pháp XGBoost, mô hình học máy
Tóm tắt:
Nghiên cứu này sử dụng một mô hình máy học XGBoost để dự đoán độ bền liên kết của cốt thép bị ăn mòn và lớp bê tông xung quanh. Một bộ dữ liệu bao gồm 218 mẫu thí nghiệm đã được thu thập từ các tài liệu hiện có để xây dựng mô hình và kiểm nghiệm phương pháp đề xuất. Kết quả tính toán chỉ ra rằng mô hình XGBoost có thể đạt hiệu suất dự đoán tốt. Do đó mô hình được đề xuất là một công cụ đầy hứa hẹn để hỗ trợ các kỹ sư trong việc dự báo cường độ liên kết của cốt thép bị ăn mòn và lớp bê tông xung quanh.
Tạp chí liên quan
- Applications of Google OR-Tools in solving construction management linear optimization problems = Ứng dụng công cụ Google OR-Tools trong giải các bài toán tối ưu hóa tuyến tính trong quản lý dự án xây dựng
- Experimental study on influence of rice husk ash on mortar compressive strength at different temperatures = Nghiên cứu thực nghiệm ảnh hưởng của tro trấu tới cường độ của vữa ở các nhiệt độ khác nhau
- Artificial neural network with adaptive moment estimation training approaches for prediction of punching shear capacity of steel fibre reinforced concrete slabs = Sử dụng mạng nơ-ron thần kinh nhân tạo với phương pháp huấn luyện ước tính mô men tự thích n
- Influence of rice husk ash on mortar compressive strength at different temperatures : machine learning based modelling = Ảnh hưởng của tro trấu tới cường độ của vữa ở các nhiệt độ khác nhau : mô hình hóa bằng máy học
- Image processing-based automatic gradation of stone aggregates = Tự động hóa việc xác định cấp phối hạt của cốt liệu đá sử dụng kỹ thuật xử lý ảnh





