Dự báo lạm phát tại Việt Nam bằng mô hình mạng thần kinh nhân tạo
Tác giả: Nguyễn Khắc Hiếu, Nguyễn Thị Anh Vân
Số trang:
Tr. 15-35
Tên tạp chí:
Tạp chí Phát triển Kinh tế
Số phát hành:
Số 286 tháng 8
Kiểu tài liệu:
Báo - Tạp chí
Nơi lưu trữ:
209 Phan Thanh
Mã phân loại:
330
Ngôn ngữ:
Tiếng Anh
Từ khóa:
Dự báo, lạm phát, mạng thần kinh nhân tạo, ANN, ARDL
Chủ đề:
Lạm phát
Tóm tắt:
Bài viết này nhằm so sánh hiệu quả dự báo của mô hình mạng thần kinh nhân tạo (Artificial Neural Network: ANN) và mô hình phân phối độ trễ tự hồi quy (Autoregressive Distributed Lag: ARDL) trong dự báo lạm phát theo tháng tại VN. Kết quả cho thấy, mô hình ANN dự báo trong mẫu tốt hơn mô hình ARDL ở cả 3 tiêu chí R2, RMSE và MAE. Đối với dự báo ngoài mẫu, mô hình ANN dự báo tốt hơn ở 2 tiêu chí RMSE và R2. Nhìn chung, mô hình ANN dự báo lạm phát tại VN tốt hơn mô hình ARDL.
Tạp chí liên quan
- Quan hệ giữa sự hợp tác với khách hàng trong quản trị chuỗi cung ứng và kết quả hoạt động của doanh nghiệp sản xuất chế tạo
- Phát trển thị trường chứng khoán phái sinh Việt Nam : cần có giải pháp đồng bộ
- Phân tích vai trò nhà quản lý trong việc triển khai hệ thống thông tin kế toán trong giai đoạn hội nhập kinh tế toàn cầu
- Phát huy vai trò của marketing nội bộ trong các ngân hàng thương mại Việt Nam
- Dự báo xu hướng tỷ giá USD/VND trong giao dịch ngoại hối





