Sử dụng mô hình học sâu dự đoán hàm lượng vi chất của thực phẩm sau chế biến
Tác giả: Nguyễn Hoàng Vũ, Đào Ngọc Bích, Trần Thanh Hương, Phạm Minh Triển
Số trang:
Tr. 01-08
Số phát hành:
Tập 66 - Số 6 - Tháng 6
Kiểu tài liệu:
Tạp chí trong nước
Nơi lưu trữ:
03 Quang Trung
Mã phân loại:
641
Ngôn ngữ:
Tiếng Việt
Từ khóa:
Chế biến thực phẩm, chất dinh dưỡng, học sâu, mô hình dự đoán
Chủ đề:
Chế biến thực phẩm
Tóm tắt:
Thực tế, việc thu thập thông tin vi lượng của thực phẩm trước và sau chế biến đặt ra nhiều thách thức do sự biến đổi sinh học, sự tương tác của các thành phần trong món ăn. Cách tiếp cận hiện nay là thu thập dữ liệu từng thành phần dinh dưỡng trước và sau khi chế biến. Sau đó, các mô hình học máy thông thường sẽ sử dụng dữ liệu này để đưa ra kết quả dự báo tốt nhưng độ ổn định còn hạn chế. Do đó, nghiên cứu này đề xuất sử dụng mô hình học sâu để huấn luyện trên bộ dữ liệu với 27 thành phần dinh dưỡng thay đổi qua hai quá trình chế biến nhiệt ẩm (luộc) và nhiệt khô (chiên) trích xuất từ bộ dữ liệu tham chiếu tiêu chuẩn của Hoa Kỳ.
Tạp chí liên quan
- Nguy cơ ô nhiễm không khí trong nhà và đề xuất giải pháp thiết kế công trình đảm bảo chất lượng không khí theo tiêu chuẩn Việt Nam
- Sử dụng chỉ thị sinh học rêu Barbula Indica trong đánh giá nguồn phát thải gây ô nhiễm kim loại nặng trong không khí tại thành phố Hải Phòng
- Nghiên cứu xây dựng hệ thống thông số, chỉ thị, chỉ số đánh giá kết quả đạt mục tiêu các quy hoạch ngành tài nguyên và môi trường
- Từ kinh nghiệm quốc tế đề xuất giải pháp chính sách khuyến khích thiết kế, chế tạo thiết bị chuyên dùng cho hoạt động điều tra cơ bản tài nguyên và môi trường
- Kinh nghiệm phát triển công trình xanh trên thế giới và đề xuất giải pháp phát triển ở Việt Nam nhằm đáp ứng mục tiêu giảm phát thải khí nhà kính