Sử dụng mô hình học sâu dự đoán hàm lượng vi chất của thực phẩm sau chế biến
Tác giả: Nguyễn Hoàng Vũ, Đào Ngọc Bích, Trần Thanh Hương, Phạm Minh Triển
Số trang:
Tr. 01-08
Số phát hành:
Tập 66 - Số 6 - Tháng 6
Kiểu tài liệu:
Tạp chí trong nước
Nơi lưu trữ:
03 Quang Trung
Mã phân loại:
641
Ngôn ngữ:
Tiếng Việt
Từ khóa:
Chế biến thực phẩm, chất dinh dưỡng, học sâu, mô hình dự đoán
Chủ đề:
Chế biến thực phẩm
Tóm tắt:
Thực tế, việc thu thập thông tin vi lượng của thực phẩm trước và sau chế biến đặt ra nhiều thách thức do sự biến đổi sinh học, sự tương tác của các thành phần trong món ăn. Cách tiếp cận hiện nay là thu thập dữ liệu từng thành phần dinh dưỡng trước và sau khi chế biến. Sau đó, các mô hình học máy thông thường sẽ sử dụng dữ liệu này để đưa ra kết quả dự báo tốt nhưng độ ổn định còn hạn chế. Do đó, nghiên cứu này đề xuất sử dụng mô hình học sâu để huấn luyện trên bộ dữ liệu với 27 thành phần dinh dưỡng thay đổi qua hai quá trình chế biến nhiệt ẩm (luộc) và nhiệt khô (chiên) trích xuất từ bộ dữ liệu tham chiếu tiêu chuẩn của Hoa Kỳ.
Tạp chí liên quan
- Khoa học và công nghệ phục vụ tăng trưởng xanh, kinh tế tuần hoàn, giảm phát thải khí nhà kính tại Việt Nam
- Nghiên cứu đề xuất giải pháp giảm phát thải khí nhà kính cho ngành sản xuất xi măng
- Nghiên cứu kiểm kê khí nhà kính theo tiêu chuẩn ISO 14064-1:2018 tại doanh nghiệp thuộc ngành công nghiệp phụ trợ
- Nghiên cứu khả năng hấp phụ xanh methylen của tro bay biến tính bằng phương pháp nung chảy thủy nhiệt với NAOH rắn
- Đánh giá việc sử dụng ảnh vệ tinh Landsat 8 - 9 trong giám sát tổng chất rắn lơ lửng (TSS) trong nước biển : nghiên cứu ở vùng biển Đà Nẵng