Sử dụng mô hình học sâu dự đoán hàm lượng vi chất của thực phẩm sau chế biến
Tác giả: Nguyễn Hoàng Vũ, Đào Ngọc Bích, Trần Thanh Hương, Phạm Minh Triển
Số trang:
Tr. 01-08
Số phát hành:
Tập 66 - Số 6 - Tháng 6
Kiểu tài liệu:
Tạp chí trong nước
Nơi lưu trữ:
03 Quang Trung
Mã phân loại:
641
Ngôn ngữ:
Tiếng Việt
Từ khóa:
Chế biến thực phẩm, chất dinh dưỡng, học sâu, mô hình dự đoán
Chủ đề:
Chế biến thực phẩm
Tóm tắt:
Thực tế, việc thu thập thông tin vi lượng của thực phẩm trước và sau chế biến đặt ra nhiều thách thức do sự biến đổi sinh học, sự tương tác của các thành phần trong món ăn. Cách tiếp cận hiện nay là thu thập dữ liệu từng thành phần dinh dưỡng trước và sau khi chế biến. Sau đó, các mô hình học máy thông thường sẽ sử dụng dữ liệu này để đưa ra kết quả dự báo tốt nhưng độ ổn định còn hạn chế. Do đó, nghiên cứu này đề xuất sử dụng mô hình học sâu để huấn luyện trên bộ dữ liệu với 27 thành phần dinh dưỡng thay đổi qua hai quá trình chế biến nhiệt ẩm (luộc) và nhiệt khô (chiên) trích xuất từ bộ dữ liệu tham chiếu tiêu chuẩn của Hoa Kỳ.
Tạp chí liên quan
- Weak two-scale convergence in L2 for a two-dimensional case = Hội tụ hai-kích thước yếu trong L2 cho một trường hợp hai chiều
- Strong two-scale convergence for a two-dimensional case = Hội tụ hai-kích thước mạnh cho một trường hợp hai chiều
- Transition nodal basis functions in p-adaptive finte element methods = Hàm nút cơ sở chuyển giao dùng trong phương pháp phần tử hữu hạn thích nghi loại p
- Compare transient stress induced in in-air and in-water laser ablation using simulation method = So sánh ứng suất tức thời sinh ra trong quá trình phá hủy bằng tia laser trong không khí và trong nước bằng phương pháp mô phỏng
- h-adaptive refinement strategies for triangular finite element meshes = Các thuật toán làm mịn h-thích nghi cho lưới phần tử hữu hạn tam giác