Tối ưu hóa độ chính xác dự đoán kết cấu bê tông cốt thép bị ăn mòn dựa trên so sánh các mô hình trí tuệ nhân tạo
Tác giả: Vương Hoàng Thạch, Cao Nữ Kim Anh, Nguyễn Thanh Hưng
Số trang:
Tr. 106-109
Số phát hành:
Số 673 - Tháng 6
Kiểu tài liệu:
Tạp chí trong nước
Nơi lưu trữ:
03 Quang Trung
Mã phân loại:
690
Ngôn ngữ:
Tiếng Việt
Từ khóa:
Mô hình trí tuệ nhân tạo, ăn mòn, cường độ nén, bê tông cốt thép
Chủ đề:
Kết cấu--Bê tông cốt thép
Tóm tắt:
Đánh giá các mô hình dự đoán và tập hợp để dự đoán khả năng chịu lực của kết cấu BTCT bị ăn mòn, sử dụng các kỹ thuật như máy hỗ trợ vectơ (SVMs), mạng nơ-ron nhân tạo (ANNs), hồi quy tuyến tính (LR) và hồi quy tuyến tính tổng quát (GENLIN) cũng như các mô hình tập hợp kết hợp các phương pháp này.
Tạp chí liên quan
- Training artificial neural network regression based on the generalized delta rule : a case study in modeling the compressive strength of concrete = Huấn luyện mạng nơ-ron thần kinh nhân tạo dùng cho phân tích hồi quy dựa trên quy tắc delta khái quát: ứng
- XGBoost regression for estimating bearing capacity of concrete piles = Sử dụng hồi quy XGBoost để đánh giá sức chịu tải của cọc bê tông
- Training deep neural network for regression analysis with the generalized delta rule : a case study in modeling the shear strength of soil = Huấn luyện mạng nơ-ron thần kinh nhân tạo sâu dùng cho phân tích hồi quy dựa trên quy tắc delta khái quát: ứng dụn
- Linear regression models for predicting the compressive strength of rice husk ash-blended concrete = Ứng dụng các mô hình hồi quy tuyến tính cho việc dự báo cường độ chịu nén của bê tông có chứa tro trấu
- Applications of Google OR-Tools in solving construction management linear optimization problems = Ứng dụng công cụ Google OR-Tools trong giải các bài toán tối ưu hóa tuyến tính trong quản lý dự án xây dựng





