Xây dựng mô hình học máy được tối ưu hóa bằng thuật toán jellyfish search để dự báo năng suất lao động trên công trường
Tác giả: Võ Huỳnh Kim Chi, Trương Đình Nhật, Nguyễn Thanh Phong, Lê Thị Thùy Linh
Số trang:
Tr. 50-55
Số phát hành:
Tháng 2
Kiểu tài liệu:
Tạp chí trong nước
Nơi lưu trữ:
03 Quang Trung
Mã phân loại:
690
Ngôn ngữ:
Tiếng Việt
Từ khóa:
Jellyfish Search, năng suất lao động, mô hình học máy, tối ưu hóa, dự báo
Chủ đề:
Công trình xây dựng
&
Mô hình học máy
Tóm tắt:
Nghiên cứu này trình bày các so sánh và đánh giá hiệu suất của các mô hình học máy, bao gồm bốn mô hình đơn ANN, SVR, LR, CART và ba mô hình hỗn hợp Voting, Bagging, Stacking.
Tạp chí liên quan
- Ảnh hưởng của cường độ bê tông đến ứng xử cắt của dầm cao bê tông sợi thép
- Phân tích tĩnh tấm FGM có vi bọt rỗng trên nền đàn hồi dưới tác dụng tải trọng cơ học, nhiệt độ và độ ẩm theo lý thuyết biến dạng cắt bậc nhất
- Phân tích dao động của tấm Sandwich Nano Graphene đàn hồi-điện-từ đặt trên nền đàn hồi Winkler-Pasternak
- Đặc điểm cường độ đất yếu gia cố bằng các loại tro xỉ khác nhau
- Ảnh hưởng đồng thời của cốt liệu lớn tái chế và tỷ lệ nước/xi măng đến cường độ chịu nén và mô đun đàn hồi của bê tông cốt liệu tái chế