Xây dựng mô hình học máy được tối ưu hóa bằng thuật toán jellyfish search để dự báo năng suất lao động trên công trường
Tác giả: Võ Huỳnh Kim Chi, Trương Đình Nhật, Nguyễn Thanh Phong, Lê Thị Thùy Linh
Số trang:
Tr. 50-55
Số phát hành:
Tháng 2
Kiểu tài liệu:
Tạp chí trong nước
Nơi lưu trữ:
03 Quang Trung
Mã phân loại:
690
Ngôn ngữ:
Tiếng Việt
Từ khóa:
Jellyfish Search, năng suất lao động, mô hình học máy, tối ưu hóa, dự báo
Chủ đề:
Công trình xây dựng
&
Mô hình học máy
Tóm tắt:
Nghiên cứu này trình bày các so sánh và đánh giá hiệu suất của các mô hình học máy, bao gồm bốn mô hình đơn ANN, SVR, LR, CART và ba mô hình hỗn hợp Voting, Bagging, Stacking.
Tạp chí liên quan
- Nghiên cứu thực nghiệm xác định áp lực sóng xung kích trên bề mặt đất do 2 lượng nổ liên tiếp trong không khí
- Sử dụng lý thuyết biến dạng cắt tính toán động lực học của dầm bê tông cốt thanh composite aramid trên nền đàn hồi chịu tác dụng của hệ dao động di động
- Hiện tượng phồng rộp nền gạch lát sàn : nguyên nhân, biện pháp phòng tránh và giải pháp khắc phục
- Nghiên cứu ứng dụng BIM trong mô phỏng cháy nổ và thoát hiểm công trình dân dụng trong giai đoạn khai thác
- Nghiên cứu thực nghiệm ảnh hưởng của sợi thép trong gia cường kháng uốn dầm bê tông cốt thép bằng bê tông chất lượng siêu cao