Xây dựng mô hình học máy được tối ưu hóa bằng thuật toán jellyfish search để dự báo năng suất lao động trên công trường
Tác giả: Võ Huỳnh Kim Chi, Trương Đình Nhật, Nguyễn Thanh Phong, Lê Thị Thùy Linh
Số trang:
Tr. 50-55
Số phát hành:
Tháng 2
Kiểu tài liệu:
Tạp chí trong nước
Nơi lưu trữ:
03 Quang Trung
Mã phân loại:
690
Ngôn ngữ:
Tiếng Việt
Từ khóa:
Jellyfish Search, năng suất lao động, mô hình học máy, tối ưu hóa, dự báo
Chủ đề:
Công trình xây dựng
&
Mô hình học máy
Tóm tắt:
Nghiên cứu này trình bày các so sánh và đánh giá hiệu suất của các mô hình học máy, bao gồm bốn mô hình đơn ANN, SVR, LR, CART và ba mô hình hỗn hợp Voting, Bagging, Stacking.
Tạp chí liên quan
- Applications of Google OR-Tools in solving construction management linear optimization problems = Ứng dụng công cụ Google OR-Tools trong giải các bài toán tối ưu hóa tuyến tính trong quản lý dự án xây dựng
- Experimental study on influence of rice husk ash on mortar compressive strength at different temperatures = Nghiên cứu thực nghiệm ảnh hưởng của tro trấu tới cường độ của vữa ở các nhiệt độ khác nhau
- Artificial neural network with adaptive moment estimation training approaches for prediction of punching shear capacity of steel fibre reinforced concrete slabs = Sử dụng mạng nơ-ron thần kinh nhân tạo với phương pháp huấn luyện ước tính mô men tự thích n
- Influence of rice husk ash on mortar compressive strength at different temperatures : machine learning based modelling = Ảnh hưởng của tro trấu tới cường độ của vữa ở các nhiệt độ khác nhau : mô hình hóa bằng máy học
- Image processing-based automatic gradation of stone aggregates = Tự động hóa việc xác định cấp phối hạt của cốt liệu đá sử dụng kỹ thuật xử lý ảnh