So sánh khả năng dự báo chỉ số VN Index và HN Index của các mô hình AI và ARIMA
Tác giả: Lưu Thu QuangTóm tắt:
Dự báo VNIndex là công việc thường trực của những chuyên gia phân tích, nhà đầu tư. Trong quá khứ, đã có rất nhiều mô hình dự báo được phát triển để thực hiện điều này. Gần đây nhất các định chế tài chính lại có xu hướng áp dụng những công cụ trí tuệ nhân tạo (AI) cho hoạt động dự báo. Bài báo này so sánh hiệu quả của các công cụ Al này trong việc dự báo VNindex và HNlndex. Các công cụ Ai được sử dụng bao gồm: Mạng lưới thần kinh nhân tạo (ANN), máy vector hỗ trợ (SVM), rừng ngẫu nhiên (RF), bộ nhớ ngắn dài hạn (LSTM) và mô hình tự hồi quy trung bình trượt tích lũy (ARIMA). Kết quả cho thấy LSTM là công cụ AI có khả năng dự báo VNIndex chính xác nhất, với sai số nhỏ nhất. Tuy nhiên, khi dự báo HNIndex, SVM lại có sai số nhỏ hơn so với LSTM. Các công cụ AI khác đều có kết quả dự báo kém hơn cho cả hai chỉ số chứng khoán.
- Ảnh hưởng của hành vi hối lộ tới xác suất sống sót của doanh nghiệp nhỏ và vừa tại Việt Nam
- Tác động của thể chế đến hiệu ứng lan tỏa từ doanh nghiệp FDI đến doanh nghiệp khu vực ngoài nhà nước ở Việt Nam
- Khoảng cách vị thế việc làm trong tham gia bảo hiểm xã hội tự nguyện ở Việt Nam
- Các yếu tố quyết định tính bền vững của các doanh nghiệp siêu nhỏ, nhỏ và vừa
- Mối quan hệ giữa quản lý chuỗi cung ứng xanh và kết quả hoạt động của các doanh nghiệp xây dựng tại Việt Nam