So sánh khả năng dự báo chỉ số VN Index và HN Index của các mô hình AI và ARIMA
Tác giả: Lưu Thu QuangTóm tắt:
Dự báo VNIndex là công việc thường trực của những chuyên gia phân tích, nhà đầu tư. Trong quá khứ, đã có rất nhiều mô hình dự báo được phát triển để thực hiện điều này. Gần đây nhất các định chế tài chính lại có xu hướng áp dụng những công cụ trí tuệ nhân tạo (AI) cho hoạt động dự báo. Bài báo này so sánh hiệu quả của các công cụ Al này trong việc dự báo VNindex và HNlndex. Các công cụ Ai được sử dụng bao gồm: Mạng lưới thần kinh nhân tạo (ANN), máy vector hỗ trợ (SVM), rừng ngẫu nhiên (RF), bộ nhớ ngắn dài hạn (LSTM) và mô hình tự hồi quy trung bình trượt tích lũy (ARIMA). Kết quả cho thấy LSTM là công cụ AI có khả năng dự báo VNIndex chính xác nhất, với sai số nhỏ nhất. Tuy nhiên, khi dự báo HNIndex, SVM lại có sai số nhỏ hơn so với LSTM. Các công cụ AI khác đều có kết quả dự báo kém hơn cho cả hai chỉ số chứng khoán.
- Xác định các rủi ro cho dự án đầu tư xây dựng sử dụng nguồn vốn đầu tư trực tiếp nước ngoài
- Một số giải pháp khai thác và quản trị dữ liệu tuần hoàn thông qua ứng dụng hộ chiếu sản phẩm kỹ thuật số
- Quản lý phát triển nhà ở cho công nhân phục vụ khu công nghiệp Cát Lái 2, TP Thủ Đức, TP. Hồ Chí Minh
- Phong cách lãnh đạo doanh nghiệp trong cách mạng công nghiệp 4.0 và chuyển đổi số
- Rủi ro thanh quyết toán cho nhà thầu trong ngành công nghiệp xây dựng Việt Nam : nguồn rủi ro và pháp lý bảo vệ