So sánh khả năng dự báo chỉ số VN Index và HN Index của các mô hình AI và ARIMA
Tác giả: Lưu Thu QuangTóm tắt:
Dự báo VNIndex là công việc thường trực của những chuyên gia phân tích, nhà đầu tư. Trong quá khứ, đã có rất nhiều mô hình dự báo được phát triển để thực hiện điều này. Gần đây nhất các định chế tài chính lại có xu hướng áp dụng những công cụ trí tuệ nhân tạo (AI) cho hoạt động dự báo. Bài báo này so sánh hiệu quả của các công cụ Al này trong việc dự báo VNindex và HNlndex. Các công cụ Ai được sử dụng bao gồm: Mạng lưới thần kinh nhân tạo (ANN), máy vector hỗ trợ (SVM), rừng ngẫu nhiên (RF), bộ nhớ ngắn dài hạn (LSTM) và mô hình tự hồi quy trung bình trượt tích lũy (ARIMA). Kết quả cho thấy LSTM là công cụ AI có khả năng dự báo VNIndex chính xác nhất, với sai số nhỏ nhất. Tuy nhiên, khi dự báo HNIndex, SVM lại có sai số nhỏ hơn so với LSTM. Các công cụ AI khác đều có kết quả dự báo kém hơn cho cả hai chỉ số chứng khoán.
- Phân tích và khuyến nghị hoàn thiện tiêu chuẩn gối cầu TCVN 13594-8:2023 cho cầu đường sắt tốc độ cao có yêu cầu kháng chấn
- Phân tích tai nạn giao thông liên quan đến người đi bộ ở nước ta bằng Python
- Giải pháp giếng cát đóng túi trong xử lý nền đất yếu và khả năng ứng dụng tại Việt Nam
- Nâng cao hiệu quả việc thực hành tay nghề thi công cơ bản và công tác sản xuất kết hợp sinh viên Khoa Công trình - Trường Đại học Công nghệ Giao thông vận tải
- Nỗ lực của nhà thầu hướng đến thành công dự án nhà công nghiệp : phân tích nghiên cứu liên quan





