Tối ưu hóa ước tính mức tiêu thụ năng lượng trong các tòa nhà dựa trên các thuật toán trí tuệ nhân tạo
Tác giả: Trần Đức Học, Lê Tấn TàiTóm tắt:
Mô phỏng và dự báo năng lượng tiêu thụ đóng vai trò quan trọng trong việc thiết lập chính sách năng lượngvà đưa ra quyết định theo hướng phát triển bền vững. Nghiên cứu này sử dụng phương pháp kỹ thuật thốngkê và công cụ trí tuệ nhân tạo bao gồm mạng nơ-ron thần kinh (ANNs – Artificial neutral networks), máy hỗtrợ véc tơ (SVM – Support vector machine), cây phân loại và hồi quy (CART - Classification and regressiontrees), hồi quy tuyến tính (LR - Linear regression), hồi quy tuyến tính tổng quát (GENLIN - Generalized linearregression), tự động phát hiện tương tác Chi-squared (CHAID - Chi-square automatic interaction detector) vàmô hình tổng hợp (Ensemble model) để dự đoán mức tiêu thụ năng lượng trong các căn hộ tòa nhà chung cư.Bộ dữ liệu để xây dựng mô hình gồm 200 mẫu được khảo sát ở nhiều chung cư tại TP. Hồ Chí Minh. Mô hìnhđơn có hiệu quả tốt nhất trong quá trình dự đoán là CART, trong khi đó mô hình được tổng hợp tốt nhất làCART + GENLIN.
- Thực trạng ứng dụng đơn giản hóa mặt cong tự do bằng các tấm phẳng đa giác trong thiết kế kiến trúc
- Ứng dụng mặt cong hình học Hyperbolic Paraboloid trong thiết kế đồ án kiến trúc
- Ứng dụng công nghệ để tối ưu thời gian trong quá trình thiết kế thi công nội thất
- Ứng dụng mặt cong tự do trong thiết kế và xây dựng các công trình kiến trúc hiện đại tại Việt Nam
- Giải pháp giảm nhiễu cho các tín hiệu mới trong các hệ thống định vị sử dụng vệ tinh