Tối ưu hóa ước tính mức tiêu thụ năng lượng trong các tòa nhà dựa trên các thuật toán trí tuệ nhân tạo
Tác giả: Trần Đức Học, Lê Tấn TàiTóm tắt:
Mô phỏng và dự báo năng lượng tiêu thụ đóng vai trò quan trọng trong việc thiết lập chính sách năng lượngvà đưa ra quyết định theo hướng phát triển bền vững. Nghiên cứu này sử dụng phương pháp kỹ thuật thốngkê và công cụ trí tuệ nhân tạo bao gồm mạng nơ-ron thần kinh (ANNs – Artificial neutral networks), máy hỗtrợ véc tơ (SVM – Support vector machine), cây phân loại và hồi quy (CART - Classification and regressiontrees), hồi quy tuyến tính (LR - Linear regression), hồi quy tuyến tính tổng quát (GENLIN - Generalized linearregression), tự động phát hiện tương tác Chi-squared (CHAID - Chi-square automatic interaction detector) vàmô hình tổng hợp (Ensemble model) để dự đoán mức tiêu thụ năng lượng trong các căn hộ tòa nhà chung cư.Bộ dữ liệu để xây dựng mô hình gồm 200 mẫu được khảo sát ở nhiều chung cư tại TP. Hồ Chí Minh. Mô hìnhđơn có hiệu quả tốt nhất trong quá trình dự đoán là CART, trong khi đó mô hình được tổng hợp tốt nhất làCART + GENLIN.
- Thực trạng tài trợ và cơ hội tài chính khí hậu từ Quỹ Khí hậu Xanh cho các nước đang phát triển
- Đánh giá sự hài lòng của du khách đối với ẩm thực đường phố tại thành phố Cần Thơ
- Kinh nghiệm phát triển du lịch ẩm thực của Hàn Quốc và bài học kinh nghiệm cho Việt Nam
- Kinh nghiệm phát triển du lịch địa chất tại công viên địa chất Trung Quốc
- Dự báo phân bố mưa cho các tiểu lưu vực trong lưu vực sông Srêpốk theo mô hình CMIP6