Phát triển mô hình Bayes động kết hợp thuật toán Markov Chain Monte Carlo để lựa chọn chương trình năng lượng tái tạo tối ưu trong công trình xây dựng
Tác giả: Phạm Vũ Hồng Sơn, Trần Bình Phương Nhân
Số trang:
Tr. 79-84
Tên tạp chí:
Xây dựng
Số phát hành:
Số 12
Kiểu tài liệu:
Tạp chí trong nước
Nơi lưu trữ:
03 Quang Trung
Mã phân loại:
624
Ngôn ngữ:
Tiếng Việt
Từ khóa:
Năng lượng tái tạo, người ra quyết định, mô hình đồ họa Bayes động, thuật toán Markov Chain Monte Carlo, các chỉ số năng lượng bền vững (Sis), ra quyết định lựa chọn nhiều tiêu chí
Chủ đề:
Năng lượng
&
Công trình xây dựng
Tóm tắt:
Nghiên cứu này sẽ vận dụng tính năng vượt trội của mô hình Bayes động (DBM) kết hợp Markov Chain Monte Carlo (MCMC) để xử lý biến thay đổi theo thời gian. Qua đó, giúp người đọc nói chung, cũng như người ra quyết định nói riêng có sự nhìn nhận tổng quát hơn về sự thay đổi vị trí xếp hạng của các nguồn RE theo thời gian. Đồng thời giúp cho ta lựa chọn tối ưu nhất các nguồn RE theo xu hướng phát triển của xã hội.
Tạp chí liên quan
- Tăng cường sự tham gia của khu vực tư nhân thông qua hợp tác công - tư trong xử lý chất thải rắn sinh hoạt
- Các cơ chế tài chính thúc đẩy bảo tồn đa dạng sinh học và dịch vụ hệ sinh thái
- Đánh giá vai trò của nhận thức cộng đồng trong duy trì bền vững đô thị và phát triển dịch vụ hệ sinh thái tại công viên Tao Đàn
- Phát hành trái phiếu xanh tại Việt Nam : thực trạng và khuyến nghị
- Đề xuất các giải pháp ứng phó với đảo nhiệt đô thị để bảo vệ sức khỏe người dân và thích ứng với biến đổi khí hậu