Phát triển mô hình Bayes động kết hợp thuật toán Markov Chain Monte Carlo để lựa chọn chương trình năng lượng tái tạo tối ưu trong công trình xây dựng
Tác giả: Phạm Vũ Hồng Sơn, Trần Bình Phương Nhân
Số trang:
Tr. 79-84
Tên tạp chí:
Xây dựng
Số phát hành:
Số 12
Kiểu tài liệu:
Tạp chí trong nước
Nơi lưu trữ:
03 Quang Trung
Mã phân loại:
624
Ngôn ngữ:
Tiếng Việt
Từ khóa:
Năng lượng tái tạo, người ra quyết định, mô hình đồ họa Bayes động, thuật toán Markov Chain Monte Carlo, các chỉ số năng lượng bền vững (Sis), ra quyết định lựa chọn nhiều tiêu chí
Chủ đề:
Năng lượng
&
Công trình xây dựng
Tóm tắt:
Nghiên cứu này sẽ vận dụng tính năng vượt trội của mô hình Bayes động (DBM) kết hợp Markov Chain Monte Carlo (MCMC) để xử lý biến thay đổi theo thời gian. Qua đó, giúp người đọc nói chung, cũng như người ra quyết định nói riêng có sự nhìn nhận tổng quát hơn về sự thay đổi vị trí xếp hạng của các nguồn RE theo thời gian. Đồng thời giúp cho ta lựa chọn tối ưu nhất các nguồn RE theo xu hướng phát triển của xã hội.
Tạp chí liên quan
- Phân hạng nguy hiểm cháy và cháy nổ cho nhà sản xuất có nguy cơ nổ bụi tại Việt Nam
- Ảnh hưởng của đường quan hệ lực cắt - chuyển vị ngang của gối cách chấn đa lớp đến hiệu quả giảm chấn của nhà cách chấn đáy có kết cấu tường gạch
- Nâng cao hiệu quả nhận dạng các tham số dao động dựa trên kỹ thuật tách nguồn mù
- Ảnh hưởng của sườn đứng đến khả năng chịu nén đúng tâm của khối xây bằng gạch đất không nung
- Nguyên nhân phá hủy bề mặt gạch tháp Khương Mỹ và giải pháp hạn chế hư hỏng gạch phục chế, sử dụng gia cường khối xây tháp trong môi trường biển