Áp dụng xác suất thống kê và quá trình máy tự học cho bài toán phân tách từ văn bản tiếng Việt
Tác giả: Lê Trung Hiếu, Lê Anh Vũ, Lê Trung KiênTóm tắt:
Trình bày hai vấn đề chính: Sử dụng mô hình xác suất nhận dạng và phân tách từ tiếng Việt; Áp dụng quá trình máy tự học xây dựng mô hình xác suất tối ưu. Với mỗi mô hình xác suất, từ mới được nhận dạng, các tiếng thuộc từ mới được nối tạo thành tiếng mới trong mô hình xác suất mới. Quá trình nối chuỗi các tiếng tạo thành tiếng mới làm giảm sự nhập nhằng giữa tiếng và từ trong tiếng Việt, tăng độ chính xác cho các hàm thống kê, tăng hiệu quả cho quá trình nhận dạng từ mới. Vì vậy, mô hình xác suất sẽ hội tụ về mô hình tối ưu. Quá trình thực nghiệm với 250.034 bài báo online, gồm hơn 15.000.000 câu tiếng Việt. Độ chính xác của thuật toán phân tách từ đạt trên 90%. Từ điển được xây dựng gồm hơn 100.000 từ và cụm từ tiếng Việt.
- Biện pháp quản lý hoạt động dạy học trực tuyến để đem lại cơ hội bình đẳng cho người học
- Phát triển năng lực ứng dụng ICT cho sinh viên trong hoạt động viết bài nghiên cứu khoa học tại Trường Đại học Kỹ thuật - Công nghệ Cần Thơ
- Luật số lớn đối với tổng có trọng số các biến ngẫu nhiên mờ
- Máy tính lượng tử, cơ hội và thách thức đối với an toàn an ninh
- Trắc nghiệm thích ứng trên máy tính: Giải pháp mới đánh giá năng lực thí sinh