Áp dụng xác suất thống kê và quá trình máy tự học cho bài toán phân tách từ văn bản tiếng Việt
Tác giả: Lê Trung Hiếu, Lê Anh Vũ, Lê Trung KiênTóm tắt:
Trình bày hai vấn đề chính: Sử dụng mô hình xác suất nhận dạng và phân tách từ tiếng Việt; Áp dụng quá trình máy tự học xây dựng mô hình xác suất tối ưu. Với mỗi mô hình xác suất, từ mới được nhận dạng, các tiếng thuộc từ mới được nối tạo thành tiếng mới trong mô hình xác suất mới. Quá trình nối chuỗi các tiếng tạo thành tiếng mới làm giảm sự nhập nhằng giữa tiếng và từ trong tiếng Việt, tăng độ chính xác cho các hàm thống kê, tăng hiệu quả cho quá trình nhận dạng từ mới. Vì vậy, mô hình xác suất sẽ hội tụ về mô hình tối ưu. Quá trình thực nghiệm với 250.034 bài báo online, gồm hơn 15.000.000 câu tiếng Việt. Độ chính xác của thuật toán phân tách từ đạt trên 90%. Từ điển được xây dựng gồm hơn 100.000 từ và cụm từ tiếng Việt.
- Khoa học và công nghệ phục vụ tăng trưởng xanh, kinh tế tuần hoàn, giảm phát thải khí nhà kính tại Việt Nam
- Máy tính lượng tử, cơ hội và thách thức đối với an toàn an ninh
- Trắc nghiệm thích ứng trên máy tính: Giải pháp mới đánh giá năng lực thí sinh
- Nghiên cứu hóa học về lipid và phát triển các chuỗi sản phẩm từ sinh vật biển Việt Nam
- Ứng dụng mô hình quản trị tinh gọn tích hợp số hóa dịch vụ khám chữa bệnh ngoại trú