Xây dựng mô hình trí tuệ nhân tạo trong nhận diện ngoại tâm thu thất trên điện tâm đồ nhịp xoang
Tác giả: Nguyễn Văn Sĩ, Võ Nguyễn Minh Kha, Nguyễn Hoài Nam, Hồ Việt Anh, Cù Ngọc Bích, Hà Trương Minh Duy, Phan Nguyễn Thùy Linh, Hồng Huy Thắng, Từ Thanh Thanh, Nguyễn Vũ Đạt, Hồ Khắc MinhTóm tắt:
Xây dựng mô hình AI có đủ năng lực tầm soát ngoại tâm thu thất và đánh giá năng lực tầm soát ngoại tâm thu thất của mô hình AI trên các tập dữ liệu ECG tham chiếu. Phương pháp nghiên cứu: Nghiên cứu hồi cứu trên dữ liệu Holter ECG 24 giờ từ bệnh viện Nguyễn Trãi và bệnh viện Nguyễn Tri Phương từ năm 2021 đến 2024. Việc dán nhãn và phân tích dữ liệu diễn ra từ tháng 10 năm 2024 đến tháng 4 năm 2025. Mô hình AI được xây dựng dựa trên kiến trúc ResNet thuộc về học sâu (deep learning). Kết quả: Từ 453 bộ dữ liệu Holter ECG, có 643675 ngoại tâm thu thất được thu thập. Tỉ lệ trường hợp có ngoại tâm thu thất dày là 4,0%. Tỉ lệ beat ngoại tâm thu thất couplet, bigeminy và trigeminy lần lượt là 17,0%, 31,8% và 29,1%. Mô hình AI được xây dựng có độ nhạy trên 80%, giá trị tiên đoán dương trên 90% và điểm F1 trên 85% khi thẩm định trên các tập dữ liệu tham chiếu MIT-BIH, AHA và ESC. Kết luận: Mô hình AI do chung tôi có tiềm năng ứng dụng thực tế để tầm soát hiệu quả ngoại tâm thu thất trên dữ liệu lớn ECG.
- Khảo sát lực mô-men xoắn trước và sau tải lực trong phục hình all-on-four hàm dưới
- Tăng trưởng ở trẻ sơ sinh được hồi sức sau phẫu thuật đường tiêu hóa tại Bệnh viện Nhi Đồng 1 và các yếu tố liên quan
- Thất bại với thông khí không xâm lấn sau rút nội khí quản ở trẻ sơ sinh non tháng tại Bệnh viện Nhi Đồng 1 và các yếu tố liên quan
- Vai trò của người hướng dẫn lâm sàng ảnh hưởng đến kỹ năng giao tiếp với bệnh nhi của sinh viên khối Điều dưỡng năm cuối Đại Học Y Dược Thành Phố Hồ Chí Minh
- Nhân một trường hợp tạo nhịp bó nhánh trái – Cơ hội mới cho trẻ em Việt Nam





