Một phương pháp dựa trên mạng nơ-ron tích chập một chiều kết hợp tăng cường dữ liệu để khôi phục dữ liệu bị thiếu trong hệ thống giám sát sức khỏe kết cấu cầu
Tác giả: Trần Thế HiệpTóm tắt:
Bài báo đề xuất một phương pháp học sâu sử dụng mạng nơ-ron tích chập một chiều (1D CNN) để khôi phục dữ liệu dao động bị thiếu trong hệ thống giám sát sức khỏe kết cấu (SHM). Dữ liệu được thu thập từ mô hình cầu dây văng trong phòng thí nghiệm dưới dạng chuỗi thời gian đơn biến có các đoạn bị thiếu ngẫu nhiên. Để cải thiện khả năng học của mô hình và tính tổng quát, kỹ thuật tăng cường dữ liệu bằng nhiễu Gaussian được áp dụng trong quá trình huấn luyện. Mô hình được đánh giá bằng các chỉ số RMSE, MAE và hệ số tương quan R². Kết quả nghiên cứu cho thấy, mô hình 1D CNN có khả năng trích xuất đặc trưng cục bộ vượt trội từ tín hiệu đầu vào, đồng thời có tốc độ huấn luyện nhanh, độ ổn định cao và kiến trúc gọn nhẹ, rất phù hợp với các ứng dụng trong môi trường thực tế. Đồng thời, việc bổ sung nhiễu Gaussian với độ lệch chuẩn hợp lý, giúp cải thiện đáng kể độ chính xác khôi phục so với mô hình không tăng cường dữ liệu. Phương pháp đề xuất cho thấy tiềm năng ứng dụng trong phục hồi dữ liệu bị mất hoặc hỏng trong các hệ thống SHM thực tế, góp phần nâng cao độ tin cậy của việc phân tích và chẩn đoán kết cấu.
- Mối liên quan giữa một số đặc điểm lâm sàng và giải phẫu bệnh của sarcôm tạo xương với dấu ấn SATB2
- Đặc điểm mô bệnh học và hóa mô miễn dịch sarcoma màng hoạt dịch tại Bệnh viện K
- Nghiên cứu dấu hiệu lâm sàng và đặc điểm giải phẫu bệnh của bệnh viêm da cơ
- Đánh giá biểu hiện của thụ thể androgen trên bệnh ung thư vú bộ ba âm tính bằng phương pháp hóa mô miễn dịch
- Nghiên cứu đặc điểm hoá mô miễn dịch của EGFR và các dấu ấn CK, p63, Vimentin trong ung thư biểu mô vú dị sản tại Bệnh viện K





