Mô hình nhận diện kiệt quệ tài chính của các doanh nghiệp ngành nhựa niêm yết tại Việt Nam
Tác giả: Mai Thanh Giang, Nguyễn Việt DũngTóm tắt:
Nghiên cứu sử dụng dữ liệu từ 23 doanh nghiệp ngành nhựa niêm yết trên thị trường chứng khoán Việt Nam. Phân tích thống kê cho thấy các mô hình dự báo có độ chính xác khác nhau. X-Score và Z-Taffler có độ chính xác cao nhất, đạt 94,2%, trong khi các mô hình G-Score, O-Score, S-Score cũng có mức độ chính xác đáng kể (trên 85%). Tuy nhiên, mô hình X-Score và Z-Taffler có tỷ lệ sai lầm loại I cao (66,7%), tức là có xu hướng đánh giá sai một số doanh nghiệp khỏe mạnh là kiệt quệ tài chính. Ngược lại, G-Score có tỷ lệ sai lầm loại II thấp nhất, cho thấy khả năng nhận diện chính xác các doanh nghiệp gặp khó khăn tài chính. Do đó, cần kết hợp thêm các phương pháp Machine Learning để cải thiện độ chính xác của dự báo và hạn chế sai lầm trong nhận diện KQTC.
- Tác động của nguồn vốn hỗ trợ phát triển chính thức đến lượng khí thải CO2 tại các quốc gia Châu Á : tiếp cận theo ngưỡng đô thị hóa
- Tác động của thực hiện các yếu tố ESG tới hiệu quả hoạt động của ngân hàng thương mại tại khu vực châu Á
- Kinh nghiệm phát triển nền “kinh tế bạc” của Trung Quốc trong bối cảnh già hoá dân số và bài học cho Việt Nam
- Phát triển kinh tế tư nhân ở Việt Nam : đổi mới từ nhận thức đến thực tiễn
- Ứng dụng công nghệ chuỗi khối (Blockchain) trong đổi mới sáng tạo tài chính