Mô hình nhận diện kiệt quệ tài chính của các doanh nghiệp ngành nhựa niêm yết tại Việt Nam
Tác giả: Mai Thanh Giang, Nguyễn Việt DũngTóm tắt:
Nghiên cứu sử dụng dữ liệu từ 23 doanh nghiệp ngành nhựa niêm yết trên thị trường chứng khoán Việt Nam. Phân tích thống kê cho thấy các mô hình dự báo có độ chính xác khác nhau. X-Score và Z-Taffler có độ chính xác cao nhất, đạt 94,2%, trong khi các mô hình G-Score, O-Score, S-Score cũng có mức độ chính xác đáng kể (trên 85%). Tuy nhiên, mô hình X-Score và Z-Taffler có tỷ lệ sai lầm loại I cao (66,7%), tức là có xu hướng đánh giá sai một số doanh nghiệp khỏe mạnh là kiệt quệ tài chính. Ngược lại, G-Score có tỷ lệ sai lầm loại II thấp nhất, cho thấy khả năng nhận diện chính xác các doanh nghiệp gặp khó khăn tài chính. Do đó, cần kết hợp thêm các phương pháp Machine Learning để cải thiện độ chính xác của dự báo và hạn chế sai lầm trong nhận diện KQTC.
- Bào chế và đánh giá chất lượng Siro Nhị Trần
- Tác động của chuyển đổi số đến hiệu quả kinh doanh tại Công ty Cổ phần Dược phẩm Nhóm Bác sĩ–Dược sĩ
- Phát triển công thức bào chế vi cầu nổi chứa piperin
- Đánh giá tình trạng nhiễm trùng huyết tại đơn vị Ghép tế bào gốc- khoa Huyết học - bệnh viện Chợ Rẫy từ năm 2017 đến 6 tháng đầu năm 2024
- Đánh giá đáp ứng sau hóa trị tân hỗ trợ bằng phác đồ Docetaxel, Carboplatin và Trastuzumab ở bệnh nhân ung thư vú có thụ thể HER2 dương tính giai đoạn II, III