Classification of asphalt pavement crack severity using gradient boosting machine and image processing techniques = Phân loại vết nứt mặt đường sử dụng mô hình học máy tăng cường và các kỹ thuật xử lý ảnh
Tác giả: Hoang Nhat Duc, Tran Van Duc, Nguyen Quoc Lam, Pham Quang Nhat
Số trang:
P. 80-89
Số phát hành:
Số 04(65)
Kiểu tài liệu:
Tạp chí trong nước
Nơi lưu trữ:
03 Quang Trung
Mã phân loại:
624
Ngôn ngữ:
Tiếng Anh
Từ khóa:
Asphalt pavement, crack severity, image processing, machine learning
Chủ đề:
Engineering Technologies
Tóm tắt:
This study puts forward an innovative approach for not only detecting cracks but also recognizing their severity. Herein, the severity of a crack object is characterized by its width. Light Gradient Boosting Machine (LightGBM) has been employed to categorize pavement surface into five labels: non-crack, sealed crack, minor crack, moderate crack, and severe crack. The model construction of the LightGBM requires a set of feature extractors, including steerable filters, projection integrals, and image texture analyses.
Tạp chí liên quan
- Chất lượng cuộc sống của người bệnh sau phẫu thuật thay khớp gối toàn phần tại Bệnh viện Hữu nghị Việt Đức năm 2025
- Đặc điểm dịch tễ học, lâm sàng, thực trạng sơ cứu và xử trí ban đầu bệnh nhân rắn độc cắn tại Bệnh viện Hữu nghị Đa khoa Nghệ An
- Giá trị của thang điểm Rajan's Heart Failure (R-hf) trong tiên lượng kết cục ngắn hạn ở bệnh nhân suy tim mất bù cấp
- Đánh giá chức năng gan và thận ở bệnh nhân HIV điều trị ARV tại Bệnh viện Thành phố Thủ Đức trong giai đoạn 2023-2024 và các yếu tố liên quan
- Tỷ lệ mắc và một số nguyên nhân gây tổn thương thận cấp ở trẻ sơ sinh tại trung tâm sơ sinh, Bệnh viện Nhi Trung ương