Xây dựng và lựa chọn mô hình dự báo cho doanh nghiệp
Tác giả: Nguyễn Thị Xuân Hòa, Nguyễn Phương Anh, Nguyễn Minh ĐứcTóm tắt:
Nghiên cứu này so sánh các mô hình dự báo khác nhau bao gồm hai mô hình đơn lẻ ARIMA (mô hình trung bình trượt kết hợp tự hồi quy) và LSTM (mô hình mạng nơ-ron trí nhớ ngắn hạn định hướng dài hạn), và mô hình dự báo kết hợp ARIMA-LSTM. Nghiên cứu lần lượt đánh giá về hai mô hình ARIMA và LSTM trước khi đi đến kết luận cần xây dựng một mô hình dự báo kết hợp ARIMA-LSTM. Kết quả nghiên cứu cho thấy mỗi mô hình có những ưu điểm và nhược điểm riêng biệt. ARIMA thể hiện hiệu suất tốt trong việc xử lý dữ liệu có đặc tính chu kỳ và xu hướng tuyến tính, trong khi LSTM thường hiệu quả hơn trong việc nắm bắt các mẫu dữ liệu phức tạp và phi tuyến tính. Trong nghiễn cứu này kết hợp giữa hai phương pháp ARIMA LSTM cho kết quả với hiệu suất dự đoán tốt hơn trong một số tình huống cụ thể. Dựa trên kết quả đánh giá, nghiên cứu đề xuất các yếu tố để lựa chọn một mô hình dự báo phù hợp cho doanh nghiệp bao gồm tính chất của dữ liệu, mục tiêu dự báo, tài nguyên tính toán và năng lực chuyển môn của doanh nghiệp.
- Phân tích các nhân tố tác động đến nền kinh tế ngầm cấp tỉnh tại Việt Nam : tiếp cận mô hình MIMIC
- Tác động của việc làm trái trình độ tới tiền lương của các cử nhân ngành kinh doanh và quản lý ở Việt Nam
- Quan hệ giữa Non-Fungible Tokens và thị trường chứng khoán Việt Nam
- Tác động của mạng xã hội và trải nghiệm khách hàng tới sự hài lòng, ý định quay trở lại và hành vi truyền miệng về homestay của khách du lịch nội địa
- Ảnh hưởng của sự hài lòng tới ý định mua sắm lặp lại đối với khách hàng gen Z trong lĩnh vực thương mại điện tử tại Việt Nam : vai trò trung gian của sự tin tưởng





