Dự báo kiệt quệ tài chính của các doanh nghiệp Việt Nam: Ứng dụng machine learning
Tác giả: Lê Hồng Ngọc, Nguyễn Thế Long, Hồ Thị Lam, Hồ Thu Hoài
Số trang:
Tr. 35-52
Số phát hành:
Số 12
Kiểu tài liệu:
Tạp chí trong nước
Nơi lưu trữ:
209 Phan Thanh
Mã phân loại:
658
Ngôn ngữ:
Tiếng Việt
Từ khóa:
Kiệt quệ tài chính, dự báo kiệt quệ tài chính, XGBoost, machine learning
Chủ đề:
Kiệt quệ tài chính
Tóm tắt:
Nghiên cứu đã chỉ ra rằng mô hình XGBoost là phù hợp nhất cho dự báo KQTC tại Việt Nam. Từ kết quả nghiên cứu, chúng tôi cũng đã đề xuất một số hàm ý quản trị và hàm ý chính sách trong việc lựa chọn mô hình dự báo KQTC và theo dõi các yếu tố tác động đến KQTC để phát triển bền vững doanh nghiệp.
Tạp chí liên quan
- Khảo sát lực mô-men xoắn trước và sau tải lực trong phục hình all-on-four hàm dưới
- Tăng trưởng ở trẻ sơ sinh được hồi sức sau phẫu thuật đường tiêu hóa tại Bệnh viện Nhi Đồng 1 và các yếu tố liên quan
- Thất bại với thông khí không xâm lấn sau rút nội khí quản ở trẻ sơ sinh non tháng tại Bệnh viện Nhi Đồng 1 và các yếu tố liên quan
- Vai trò của người hướng dẫn lâm sàng ảnh hưởng đến kỹ năng giao tiếp với bệnh nhi của sinh viên khối Điều dưỡng năm cuối Đại Học Y Dược Thành Phố Hồ Chí Minh
- Nhân một trường hợp tạo nhịp bó nhánh trái – Cơ hội mới cho trẻ em Việt Nam





