Dự báo kiệt quệ tài chính của các doanh nghiệp Việt Nam: Ứng dụng machine learning
Tác giả: Lê Hồng Ngọc, Nguyễn Thế Long, Hồ Thị Lam, Hồ Thu Hoài
Số trang:
Tr. 35-52
Số phát hành:
Số 12
Kiểu tài liệu:
Tạp chí trong nước
Nơi lưu trữ:
209 Phan Thanh
Mã phân loại:
658
Ngôn ngữ:
Tiếng Việt
Từ khóa:
Kiệt quệ tài chính, dự báo kiệt quệ tài chính, XGBoost, machine learning
Chủ đề:
Kiệt quệ tài chính
Tóm tắt:
Nghiên cứu đã chỉ ra rằng mô hình XGBoost là phù hợp nhất cho dự báo KQTC tại Việt Nam. Từ kết quả nghiên cứu, chúng tôi cũng đã đề xuất một số hàm ý quản trị và hàm ý chính sách trong việc lựa chọn mô hình dự báo KQTC và theo dõi các yếu tố tác động đến KQTC để phát triển bền vững doanh nghiệp.
Tạp chí liên quan
- Khoa học và công nghệ phục vụ tăng trưởng xanh, kinh tế tuần hoàn, giảm phát thải khí nhà kính tại Việt Nam
- Máy tính lượng tử, cơ hội và thách thức đối với an toàn an ninh
- Trắc nghiệm thích ứng trên máy tính: Giải pháp mới đánh giá năng lực thí sinh
- Nghiên cứu hóa học về lipid và phát triển các chuỗi sản phẩm từ sinh vật biển Việt Nam
- Ứng dụng mô hình quản trị tinh gọn tích hợp số hóa dịch vụ khám chữa bệnh ngoại trú