Taekwondo pose estimation with deep learning architectures on one-dimensional and two-dimensional data
Tác giả: Dinh Duc Luong, Vuong Quang Phuong, Hoang Do Thanh TungTóm tắt:
This study extracts images from Taekwondo videos and generates skeleton data from frames using the Fast Forward Moving Picture Experts Group (FFMPEG) technique using MoveNet. After that, we use deep learning architectures such as Long Short-Term Memory Networks, Convolutional Long Short-Term Memory, and Long-term Recurrent Convolutional Networks to perform the poses classification tasks in Taegeuk in Jang lessons. This work presents two approaches. The first approach uses a sequence skeleton extracted from the image by Movenet. Second, we use sequence images to train using video classification architecture. Finally, we recognize poses in sports lessons using skeleton data to remove noise in the image, such as background and extraneous objects behind the exerciser. As a result, our proposed method has achieved promising performance in pose classification tasks in an introductory Taekwondo lesson.
- Tăng cường sự tham gia của khu vực tư nhân thông qua hợp tác công - tư trong xử lý chất thải rắn sinh hoạt
- Các cơ chế tài chính thúc đẩy bảo tồn đa dạng sinh học và dịch vụ hệ sinh thái
- Đánh giá vai trò của nhận thức cộng đồng trong duy trì bền vững đô thị và phát triển dịch vụ hệ sinh thái tại công viên Tao Đàn
- Phát hành trái phiếu xanh tại Việt Nam : thực trạng và khuyến nghị
- Đề xuất các giải pháp ứng phó với đảo nhiệt đô thị để bảo vệ sức khỏe người dân và thích ứng với biến đổi khí hậu