Taekwondo pose estimation with deep learning architectures on one-dimensional and two-dimensional data
Tác giả: Dinh Duc Luong, Vuong Quang Phuong, Hoang Do Thanh TungTóm tắt:
This study extracts images from Taekwondo videos and generates skeleton data from frames using the Fast Forward Moving Picture Experts Group (FFMPEG) technique using MoveNet. After that, we use deep learning architectures such as Long Short-Term Memory Networks, Convolutional Long Short-Term Memory, and Long-term Recurrent Convolutional Networks to perform the poses classification tasks in Taegeuk in Jang lessons. This work presents two approaches. The first approach uses a sequence skeleton extracted from the image by Movenet. Second, we use sequence images to train using video classification architecture. Finally, we recognize poses in sports lessons using skeleton data to remove noise in the image, such as background and extraneous objects behind the exerciser. As a result, our proposed method has achieved promising performance in pose classification tasks in an introductory Taekwondo lesson.
- Đánh giá tác động của đào tạo nâng cao năng lực đến sự tự tin trong chăm sóc sức khoẻ tâm thần cho người bệnh ung thư của điều dưỡng viên
- Thực trạng phát triển kinh tế tư nhân ở Việt Nam : thành tựu, thách thức và triển vọng
- Những động lực giúp Việt Nam tăng trưởng 8% trong năm 2025 : thực trạng và giải pháp
- Đẩy mạnh giải ngân vốn đầu tư công đối với các dự án trong ngành đường sắt ở Việt Nam
- Nghiên cứu mối quan hệ giữa phân cấp tài khóa và chất lượng dịch vụ công tại Việt Nam