Taekwondo pose estimation with deep learning architectures on one-dimensional and two-dimensional data
Tác giả: Dinh Duc Luong, Vuong Quang Phuong, Hoang Do Thanh TungTóm tắt:
This study extracts images from Taekwondo videos and generates skeleton data from frames using the Fast Forward Moving Picture Experts Group (FFMPEG) technique using MoveNet. After that, we use deep learning architectures such as Long Short-Term Memory Networks, Convolutional Long Short-Term Memory, and Long-term Recurrent Convolutional Networks to perform the poses classification tasks in Taegeuk in Jang lessons. This work presents two approaches. The first approach uses a sequence skeleton extracted from the image by Movenet. Second, we use sequence images to train using video classification architecture. Finally, we recognize poses in sports lessons using skeleton data to remove noise in the image, such as background and extraneous objects behind the exerciser. As a result, our proposed method has achieved promising performance in pose classification tasks in an introductory Taekwondo lesson.
- Thành phần hóa học và hoạt tính gây độc tế bào của xạ can (Belamcanda chinensis) trên dòng tế bào ung thư phổi A549
- Nghiên cứu hoạt tính chống oxy hóa, kháng khuẩn, kháng nấm của các phân đoạn dịch chiết quả sim (Rhodomyrtus tomentosa)
- Nghiên cứu phát triển gia vị rắc cơm từ nấm rơm và chùm ngây
- Nghiên cứu sử dụng vỏ cây tràm biến tính để hấp phụ ciprofloxacin trong môi trường nước
- Y học cá thể hóa trong phòng ngừa và điều trị bệnh lý tim mạch : cập nhật và hướng ứng dụng lâm sàng





