Dự báo hoạt động ngân hàng bằng thuật toán rừng ngẫu nhiên
Tác giả: Đỗ Quang HưngTóm tắt:
Mục tiêu của nghiên cứu này là dự báo hoạt động của ngân hàng dựa trên kỹ thuật trí tuệ nhân tạo thuật toán rừng ngẫu nhiên (Random Forest - RF). Để chứng minh tính hiệu quả của mô hình dự báo dựa trên RF, các mô hình dự báo khác được dựa trên ba kỹ thuật trí tuệ nhân tạo khác là mạng nơ ron truyền thẳng nhiều lớp (ANN-MLP), mạng hàm cơ sở bán kính (RBF) và hồi quy tuyến tính (MLR) cũng được phát triển. Dữ liệu được sử dụng trong xây dưng mô hình gồm 405 mẫu được thu thập từ 45 ngân hàng hoạt động tại Việt Nam trong giai đoạn 2002-2022. Các chỉ số đầu ra dự báo bao gồm tổng các khoản vay và tổng tiền gửi huy động. Kết quả thực nghiệm và các chỉ số đánh giá mô hình xác định mô hình dự báo dựa trên kỹ thuật RF cho độ chính xác cao nhất.
- Thực trạng tài trợ và cơ hội tài chính khí hậu từ Quỹ Khí hậu Xanh cho các nước đang phát triển
- Đánh giá sự hài lòng của du khách đối với ẩm thực đường phố tại thành phố Cần Thơ
- Kinh nghiệm phát triển du lịch ẩm thực của Hàn Quốc và bài học kinh nghiệm cho Việt Nam
- Kinh nghiệm phát triển du lịch địa chất tại công viên địa chất Trung Quốc
- Dự báo phân bố mưa cho các tiểu lưu vực trong lưu vực sông Srêpốk theo mô hình CMIP6