Dự báo hoạt động ngân hàng bằng thuật toán rừng ngẫu nhiên
Tác giả: Đỗ Quang HưngTóm tắt:
Mục tiêu của nghiên cứu này là dự báo hoạt động của ngân hàng dựa trên kỹ thuật trí tuệ nhân tạo thuật toán rừng ngẫu nhiên (Random Forest - RF). Để chứng minh tính hiệu quả của mô hình dự báo dựa trên RF, các mô hình dự báo khác được dựa trên ba kỹ thuật trí tuệ nhân tạo khác là mạng nơ ron truyền thẳng nhiều lớp (ANN-MLP), mạng hàm cơ sở bán kính (RBF) và hồi quy tuyến tính (MLR) cũng được phát triển. Dữ liệu được sử dụng trong xây dưng mô hình gồm 405 mẫu được thu thập từ 45 ngân hàng hoạt động tại Việt Nam trong giai đoạn 2002-2022. Các chỉ số đầu ra dự báo bao gồm tổng các khoản vay và tổng tiền gửi huy động. Kết quả thực nghiệm và các chỉ số đánh giá mô hình xác định mô hình dự báo dựa trên kỹ thuật RF cho độ chính xác cao nhất.
- Đánh giá tình trạng nhiễm trùng huyết tại đơn vị Ghép tế bào gốc- khoa Huyết học - bệnh viện Chợ Rẫy từ năm 2017 đến 6 tháng đầu năm 2024
- Đánh giá đáp ứng sau hóa trị tân hỗ trợ bằng phác đồ Docetaxel, Carboplatin và Trastuzumab ở bệnh nhân ung thư vú có thụ thể HER2 dương tính giai đoạn II, III
- Nghiên cứu tỉ lệ cắt tuyến phó giáp không chủ ý trong phẫu thuật cắt giáp và nạo hạch cổ nhóm vi tại Bệnh viện Ung Bướu Thành phố Hồ Chí Minh năm 2023
- Vai trò của thời gian nhân đôi thyroglobulin trong đánh giá tái phát, di căn ở bệnh nhân ung thư tuyến giáp thể biệt hóa
- Đánh giá bước đầu phẫu thuật đoạn chậu trong ung thư phụ khoa initial





