Nghiên cứu mô hình học máy dự đoán xác suất vỡ nợ của khách hàng doanh nghiệp tại ngân hàng thương mại cổ phần ở Việt Nam
Tác giả: Nguyễn Quốc Hùng, Quan Toại Mẫn, Trương Thị Minh Lý
Số trang:
Tr. 108-122
Số phát hành:
Số 08
Kiểu tài liệu:
Tạp chí trong nước
Nơi lưu trữ:
209 Phan Thanh
Mã phân loại:
658
Ngôn ngữ:
Tiếng Việt
Từ khóa:
Dự đoán vỡ nợ, Decision Tree, Random Forest, XGBoost, CatBoost
Chủ đề:
Khách hàng doanh nghiệp
&
Dự đoán vỡ nợ
Tóm tắt:
Bài báo sử dụng các dữ liệu liên quan đến thông tin tín dụng, tài chính và đặc điểm của khách hàng doanh nghiệp tại ngân hàng để xây dựng mô hình máy học, từ đó tiến hành thử nghiệm đánh giá và lựa chọn ra một mô hình tốt nhất. Với kết quả này, ngân hàng có thể áp dụng mô hình vào thực tế để hỗ trợ quyết định kinh doanh, giúp tăng cường khả năng dự báo rủi ro tín dụng, nâng cao hiệu suất hoạt động của ngân hàng và giảm thiểu các tổn thất không mong muốn.
Tạp chí liên quan
- Thiết kế đô thị vì sức khỏe cộng đồng
- Nghiên cứu các yếu tố hấp dẫn đô thị : lấy TP. HCM làm nghiên cứu điển hình
- Nghiên cứu thực nghiệm xác định áp lực sóng xung kích trên bề mặt đất do 2 lượng nổ liên tiếp trong không khí
- Sử dụng lý thuyết biến dạng cắt tính toán động lực học của dầm bê tông cốt thanh composite aramid trên nền đàn hồi chịu tác dụng của hệ dao động di động
- Kinh nghiệm phát triển kinh tế số của một số quốc gia Đông Á và bài học tham khảo cho Việt Nam