Nghiên cứu mô hình học máy dự đoán xác suất vỡ nợ của khách hàng doanh nghiệp tại ngân hàng thương mại cổ phần ở Việt Nam
Tác giả: Nguyễn Quốc Hùng, Quan Toại Mẫn, Trương Thị Minh Lý
Số trang:
Tr. 108-122
Số phát hành:
Số 08
Kiểu tài liệu:
Tạp chí trong nước
Nơi lưu trữ:
209 Phan Thanh
Mã phân loại:
658
Ngôn ngữ:
Tiếng Việt
Từ khóa:
Dự đoán vỡ nợ, Decision Tree, Random Forest, XGBoost, CatBoost
Chủ đề:
Khách hàng doanh nghiệp
&
Dự đoán vỡ nợ
Tóm tắt:
Bài báo sử dụng các dữ liệu liên quan đến thông tin tín dụng, tài chính và đặc điểm của khách hàng doanh nghiệp tại ngân hàng để xây dựng mô hình máy học, từ đó tiến hành thử nghiệm đánh giá và lựa chọn ra một mô hình tốt nhất. Với kết quả này, ngân hàng có thể áp dụng mô hình vào thực tế để hỗ trợ quyết định kinh doanh, giúp tăng cường khả năng dự báo rủi ro tín dụng, nâng cao hiệu suất hoạt động của ngân hàng và giảm thiểu các tổn thất không mong muốn.
Tạp chí liên quan
- Khảo sát nhu cầu chăm sóc giảm nhẹ của người bệnh ung thư đang điều trị hóa chất tại khoa Ung Bướu Bệnh viện Đà Nẵng và tìm hiểu một số yếu tố liên quan
- Giá trị của chỉ số tiên lượng giảm nhẹ trong dự đoán thời gian sống thêm bệnh nhân ung thư điều trị chăm sóc giảm nhẹ đơn thuần tại Bệnh viện Ung Bướu Nghệ An
- Khẩu phần ăn và tình trạng dinh dưỡng của bệnh nhân ung thư vòm mũi họng tại Bệnh viện Ung Bướu TP. Cần Thơ
- Kiến thức, thái độ và thực hành dựa vào bằng chứng của điều dưỡng trong chăm sóc người bệnh ung thư
- Đánh giá hiệu quả dự phòng viêm tĩnh mạch ngoại vi do hóa trị ở bệnh nhân ung thư bằng phương pháp dùng miếng gel lạnh





