Nghiên cứu mô hình học máy dự đoán xác suất vỡ nợ của khách hàng doanh nghiệp tại ngân hàng thương mại cổ phần ở Việt Nam
Tác giả: Nguyễn Quốc Hùng, Quan Toại Mẫn, Trương Thị Minh Lý
Số trang:
Tr. 108-122
Số phát hành:
Số 08
Kiểu tài liệu:
Tạp chí trong nước
Nơi lưu trữ:
209 Phan Thanh
Mã phân loại:
658
Ngôn ngữ:
Tiếng Việt
Từ khóa:
Dự đoán vỡ nợ, Decision Tree, Random Forest, XGBoost, CatBoost
Chủ đề:
Khách hàng doanh nghiệp
&
Dự đoán vỡ nợ
Tóm tắt:
Bài báo sử dụng các dữ liệu liên quan đến thông tin tín dụng, tài chính và đặc điểm của khách hàng doanh nghiệp tại ngân hàng để xây dựng mô hình máy học, từ đó tiến hành thử nghiệm đánh giá và lựa chọn ra một mô hình tốt nhất. Với kết quả này, ngân hàng có thể áp dụng mô hình vào thực tế để hỗ trợ quyết định kinh doanh, giúp tăng cường khả năng dự báo rủi ro tín dụng, nâng cao hiệu suất hoạt động của ngân hàng và giảm thiểu các tổn thất không mong muốn.
Tạp chí liên quan
- Kiến thức về đột quỵ não cấp của người nhà người bệnh và một số yếu tố liên quan tại Bệnh viện Lão khoa Trung ương năm 2025
- Hoạt động quản lý điều trị ngoại trú người bệnh đái tháo đường type 2 và một số yếu tố ảnh hưởng tại Trung tâm Y tế thành phố Mỹ Tho năm 2025
- Tỷ lệ tử vong và một số yếu tố liên quan ở người bệnh tăng áp động mạch phổi do bệnh lý van tim bên trái
- Khảo sát sức căng dọc thất trái bằng siêu âm đánh dấu mô cơ tim ở người bệnh lupus ban đỏ hệ thống
- Khảo sát nhận thức của điều dưỡng chăm sóc về sử dụng quy trình điều dưỡng tại các khoa lâm sàng Bệnh viện quận 11 năm 2024