Nghiên cứu mô hình học máy dự đoán xác suất vỡ nợ của khách hàng doanh nghiệp tại ngân hàng thương mại cổ phần ở Việt Nam
Tác giả: Nguyễn Quốc Hùng, Quan Toại Mẫn, Trương Thị Minh Lý
Số trang:
Tr. 108-122
Số phát hành:
Số 08
Kiểu tài liệu:
Tạp chí trong nước
Nơi lưu trữ:
209 Phan Thanh
Mã phân loại:
658
Ngôn ngữ:
Tiếng Việt
Từ khóa:
Dự đoán vỡ nợ, Decision Tree, Random Forest, XGBoost, CatBoost
Chủ đề:
Khách hàng doanh nghiệp
&
Dự đoán vỡ nợ
Tóm tắt:
Bài báo sử dụng các dữ liệu liên quan đến thông tin tín dụng, tài chính và đặc điểm của khách hàng doanh nghiệp tại ngân hàng để xây dựng mô hình máy học, từ đó tiến hành thử nghiệm đánh giá và lựa chọn ra một mô hình tốt nhất. Với kết quả này, ngân hàng có thể áp dụng mô hình vào thực tế để hỗ trợ quyết định kinh doanh, giúp tăng cường khả năng dự báo rủi ro tín dụng, nâng cao hiệu suất hoạt động của ngân hàng và giảm thiểu các tổn thất không mong muốn.
Tạp chí liên quan
- Quan hệ giữa sự hợp tác với khách hàng trong quản trị chuỗi cung ứng và kết quả hoạt động của doanh nghiệp sản xuất chế tạo
- Phát trển thị trường chứng khoán phái sinh Việt Nam : cần có giải pháp đồng bộ
- Phân tích vai trò nhà quản lý trong việc triển khai hệ thống thông tin kế toán trong giai đoạn hội nhập kinh tế toàn cầu
- Phát huy vai trò của marketing nội bộ trong các ngân hàng thương mại Việt Nam
- Dự báo xu hướng tỷ giá USD/VND trong giao dịch ngoại hối





