Ứng dụng trí tuệ nhân tạo trong phân tích chất lượng và ước tính khối lượng các loại hạt cà phê nhân
Tác giả: Phạm Minh Khan, Lê Hoành Sử
Số trang:
Tr. 58-80
Số phát hành:
Số 05
Kiểu tài liệu:
Tạp chí trong nước
Nơi lưu trữ:
209 Phan Thanh
Mã phân loại:
658
Ngôn ngữ:
Tiếng Việt
Từ khóa:
Phân loại cà phê, ước lượng khối lượng, mạng thần kinh tích chập (CNN), Xử lý hình ảnh, trí tuệ nhân tạo
Chủ đề:
Trí tuệ nhân tạo
&
Chất lượng dịch vụ
Tóm tắt:
Nghiên cứu này được thực hiện trên mẫu tập dữ liệu (TDL) được thu thập và phân loại theo 12 loại hạt cà phê. Nhóm sử dụng mô hình Yolov5 trong nhận diện đối tượng, công nghệ xử lý ảnh và mã nguồn mở OpenCV, thuật toán CNN (Convolutional Neural Networks) trong xử lý ảnh để phân loại, và từ đó ước lượng khối lượng từng loại hạt hạt cà phê. Các thử nghiệm bước đầu cho thấy các mô hình thuật toán ứng dụng cho kết quả tin cậy cao, có thể ứng dụng vào thực tiễn.
Tạp chí liên quan
- Đánh giá nguy cơ ngã của người bệnh viêm khớp dạng thấp bằng thang điểm morse tại Bệnh viện Đại học Y Hà Nội
- Thực trạng lo âu và một số yếu tố liên quan ở người bệnh đến tiêm và hút dịch khớp tại Bệnh viện Đại học Y Hà Nội
- Đặc điểm hình thái tuyến giáp trên siêu âm ở phụ nữ sau mãn kinh
- Bước đầu đánh giá kết quả điều trị tắc động mạch phổi cấp ở bệnh nhân cao tuổi
- Thực trạng và kết quả điều trị thiếu máu ở người bệnh phẫu thuật chỉnh hình lớn tại Bệnh viện Đại học Y Hà Nội giai đoạn 2023-2024