A hybrid pso-sa scheme for improving accuracy of fuzzy time series forecasting models
Tác giả: Pham Dinh Phong, Nguyen Duc Du, Pham Hoang Hiep, Tran Xuan Thanh
Số trang:
P. 257-275
Tên tạp chí:
Tin học & Điều khiển học
Số phát hành:
Vol 38
Kiểu tài liệu:
Tạp chí trong nước
Nơi lưu trữ:
03 Quang Trung
Mã phân loại:
005
Ngôn ngữ:
Tiếng Anh
Từ khóa:
Fuzzy time series, particle swarm optimization, simulated annealing
Chủ đề:
Computer science
Tóm tắt:
Many researches focus on optimizing length of intervals in order to improve forecasting accuracies by utilizing various optimization techniques. In the line of that research trend, in this paper, a hybrid particle swarm optimization combined with simulated annealing (PSO-SA) algorithm is proposed to optimize length of intervals to improve forecasting accuracies. The experimental results in comparison with the existing forecasting models show that the proposed forecasting model is an effective forecasting model.
Tạp chí liên quan
- In-order transition-based parsing for Vietnamese
- EVJVQA challenge: multilingual visual question answering
- A new information theory based algorithm for clustering categorical data
- Data augmentation analysis of vehicle detection in aerial images
- Fast computation of direct exponentiation to speed up implementation of dynamic block ciphers