A new information theory based algorithm for clustering categorical data
Tác giả: Do Si Truong, Lam Thanh Hien, Nguyen Thanh TungTóm tắt:
In this paper, we review two baseline algorithms for use with categorical data, namely Min-Min Roughness (MMR) and Mean Gain Ratio (MGR), and propose a new algorithm, called Minimum Mean Normalized Variation of Information (MMNVI). MMNVI algorithm uses the Mean Normalized Variation of Information of one attribute concerning another for finding the best clustering attribute, and the entropy of equivalence classes generated by the selected clustering attribute for binary splitting the clustering dataset. Experimental results on real datasets from UCI indicate that the MMNVI algorithm can be used successfully in clustering categorical data. It produces better or equivalent clustering results than the baseline algorithms.
- In-order transition-based parsing for Vietnamese
- EVJVQA challenge: multilingual visual question answering
- Data augmentation analysis of vehicle detection in aerial images
- Fast computation of direct exponentiation to speed up implementation of dynamic block ciphers
- Evolutionary algorithm for task offloading in vehicular fog computing