Phân loại tế bào bạch cầu ác tính trên ảnh hiển vi
Tác giả: Lý Hồng Thiên Ân, Trần Dương Kha, Lê Minh Hưng, Trần Đình Toàn, Trần Văn LangTóm tắt:
Vấn đề bí mật dữ liệu cá nhân trong lĩnh vực y tế dẫn đến sự khan hiếm dữ liệu huấn luyện; sự tương đồng về mặt hình thái giữa tế bào ung thư với các tế bào bình thường; đồng thời với sự mất cân bằng dữ liệu giữa các lớp càng làm tăng thêm sự phức tạp của bài toán. Bài báo này đưa ra giải pháp thực nghiệm sử dụng các mô hình về mạng neuron tích chập (CNN) và các hàm mất mát (loss function) có sẵn sử dụng tập dữ liệu C-NMC2019 của cuộc thi ISBI2019. Tập dữ liệu này bao gồm ảnh các của tế bào ung thư và của tế bào khỏe mạnh. Nghiên cứu này đề xuất một hàm mất mát đặt tên là Focal Hinge Loss (FHL) được cải tiến từ hai hàm mất mát Focal Loss và Hinge Loss, từ đó kết hợp hai mô hình CNN là DenseNet201, EfficientNetB2 để giải quyết vấn đề đặt ra. Kết quả thử nghiệm nhận được rất hiệu quả với F1 Score là 91.94%; đồng thời được xếp top 5 trên bảng xếp hạng của cuộc thi ISBI2019.
- Tác động của nguồn vốn hỗ trợ phát triển chính thức đến lượng khí thải CO2 tại các quốc gia Châu Á : tiếp cận theo ngưỡng đô thị hóa
- Tác động của thực hiện các yếu tố ESG tới hiệu quả hoạt động của ngân hàng thương mại tại khu vực châu Á
- Kinh nghiệm phát triển nền “kinh tế bạc” của Trung Quốc trong bối cảnh già hoá dân số và bài học cho Việt Nam
- Phát triển kinh tế tư nhân ở Việt Nam : đổi mới từ nhận thức đến thực tiễn
- Ứng dụng công nghệ chuỗi khối (Blockchain) trong đổi mới sáng tạo tài chính