Ứng dụng mô hình dữ liệu tần suất hỗn hợp dự báo tăng trưởng kinh tế Việt Nam
Tác giả: Lê Mai Trang, Hoàng Anh Tuấn, Đinh Thị Hà, Nguyễn Thị Hiên, Trần Kim AnhTóm tắt:
Dự báo tăng trưởng kinh tế luôn là mối quan tâm không chỉ của các nhà nghiên cứu mà còn của các nhà hoạch định chính sách của mỗi quốc gia trên thế giới. Đã có nhiều công trình nghiên cứu đưa ra các phương pháp khác nhau để dự báo tăng trưởng GDP, các phương pháp dự báo trước đây đều phân tích dựa trên bộ dữ liệu mà trong đó các biến quan sát phải đưa về cùng một tần suất, điều này có thể làm tăng sai số của ước lượng và bỏ sót những yếu tố quan trọng có tác động đến tăng trưởng kinh tế. Để sử dụng đầy đủ và hiệu quả thông tin kinh tế vĩ mô và tài chính, bài báo này ứng dụng mô hình phân tích dữ liệu với tần suất hỗn hợp MIDAS và mô hình MF-VAR để dự báo tăng trưởng GDP của Việt Nam dựa trên bộ số liệu thu thập trong giai đoạn 2006 – 2020. Kết quả thực nghiệm cho thấy rằng mô hình MIDAS cho kết quả dự báo tốt so với mô hình MF-VAR.
- Tăng cường sự tham gia của khu vực tư nhân thông qua hợp tác công - tư trong xử lý chất thải rắn sinh hoạt
- Các cơ chế tài chính thúc đẩy bảo tồn đa dạng sinh học và dịch vụ hệ sinh thái
- Đánh giá vai trò của nhận thức cộng đồng trong duy trì bền vững đô thị và phát triển dịch vụ hệ sinh thái tại công viên Tao Đàn
- Phát hành trái phiếu xanh tại Việt Nam : thực trạng và khuyến nghị
- Đề xuất các giải pháp ứng phó với đảo nhiệt đô thị để bảo vệ sức khỏe người dân và thích ứng với biến đổi khí hậu