Phân tích ý kiến khách hàng trong thương mại điện tử tiếp cận theo phương pháp học máy kết hợp kiểm định Bootstrap
Tác giả: Hồ Trung Thành, Trần Thị Ánh, Huỳnh Thanh TuyềnTóm tắt:
Sự phát triển của thế hệ Web 2.0 đã tạo ra cơ hội tương tác giữa khách hàng và doanh nghiệp một cách dễ dàng hơn thông qua kênh thương mại điện tử. Khách hàng có thể phản hồi ý kiến bằng cách để lại những bình luận dạng văn bản là ngôn ngữ tự nhiên về sản phẩm hay dịch vụ mà họ trải nghiệm. Từ đó doanh nghiệp có thể quản lý và phân tích ý kiến để hiểu được những trải nghiệm khách hàng nhằm thu hút và giữ chân khách hàng được tốt hơn. Đây là cách tiếp cận quan trọng và hiệu quả để doanh nghiệp có thể tạo được lợi thế cạnh tranh. Trong bài báo này, chúng tôi tập trung vào đề xuất phương pháp phân tích ý kiến khách hàng dựa theo phương pháp xử lý ngôn ngữ tự nhiên kết hợp với phương pháp Bản đồ tự tổ chức (SOM) và K-Means. Bên cạnh đó, kỹ thuật kiểm định T với phương pháp Bootstrap được áp dụng để đánh giá kết quả nhằm lựa chọn phương pháp gom cụm phù hợp cho trường hợp dữ liệu là tập văn bản được thu thập từ những phản hồi của khách hàng trên trang thương mại điện từ Tiki.vn. Phương pháp đề xuất có độ chính xác cao và khả năng áp dụng vào phân tích trải nghiệm của khách hàng hiệu quả.
- Tăng cường sự tham gia của khu vực tư nhân thông qua hợp tác công - tư trong xử lý chất thải rắn sinh hoạt
- Các cơ chế tài chính thúc đẩy bảo tồn đa dạng sinh học và dịch vụ hệ sinh thái
- Đánh giá vai trò của nhận thức cộng đồng trong duy trì bền vững đô thị và phát triển dịch vụ hệ sinh thái tại công viên Tao Đàn
- Phát hành trái phiếu xanh tại Việt Nam : thực trạng và khuyến nghị
- Đề xuất các giải pháp ứng phó với đảo nhiệt đô thị để bảo vệ sức khỏe người dân và thích ứng với biến đổi khí hậu