Phân tích ý kiến khách hàng trực tuyến dựa theo phương pháp học máy
Nhóm Tác giả: Bùi Minh Hiển, Nguyễn Thành Phát, Phạm Thị Thiên Hương, Nguyễn Thị Bảo Hương, Hồ Trung ThànhTóm tắt:
Phân tích cảm xúc hay khai phá ý kiến dựa trên những phản hồi của khách hàng trước, trong và sau mua sắm đóng vai trò rất quan trọng để doanh nghiệp xây dựng chiến lược kinh doanh phù hợp đối với từng sản phẩm, dịch vụ hay đối với từng phân khúc khách hàng. Thông qua việc khảo sát các mô hình phân tích và hiểu ý kiến khách hàng, bài báo trước hết tập trung vào đề xuất mô hình phân tích ý kiến khách hàng trực tuyến và thử nghiệm phương pháp với trường hợp cụ thể là tập dữ liệu được thu thập từ ứng dụng thương mại điện tử Lazada – một trong các sàn thương mại điện tử hàng đầu tại Việt Nam với nhiều năm đứng đầu thị trường. Tiếp theo, nhóm tác giả dựa vào phương pháp học máy có giám sát với hai thuật toán hồi quy Logistic và Random Forest để thực nghiệm mô hình, so sánh và đánh giá độ chính xác. Kết quả nghiên cứu hàm ý phương pháp phân tích và thấu hiểu trải nghiệm khách cho nhà quản lý để từ đó triển khai có cơ sở xây dựng chiến lược kinh doanh phù hợp hơn.
- Mối quan hệ giữa phát triển tài chính và rủi ro tín dụng tại các ngân hàng thương mại tại Việt Nam
- Tác động của tỷ lệ sở hữu nước ngoài tới hiệu quả hoạt động của các ngân hàng thương mại : bằng chứng thực nghiệm tại Việt Nam
- Kinh nghiệm phát triển kết cấu hạ tầng giao thông của Singapore và hàm ý cho Việt Nam
- Nghiên cứu tác động của các yếu tố mua sắm bền vững đến hiệu quả kinh doanh tại doanh nghiệp ngành đồ ăn nhanh Việt Nam
- Một số vấn đề cơ bản về hoạt động ngân hàng xanh và nghiên cứu thực nghiệm tại BIDV