Sử dụng phương pháp học máy dự đoán tốc độ phát triển của tảo Chlorella vulgaris trên bề mặt vữa
Tác giả: Trần Thu Hiền
Số trang:
Tr. 9-15
Tên tạp chí:
Khoa học & Công nghệ Đại học Duy Tân
Số phát hành:
Số 3(40)
Kiểu tài liệu:
Tạp chí trong nước
Nơi lưu trữ:
209 Phan Thanh
Mã phân loại:
624
Ngôn ngữ:
Tiếng Việt
Tóm tắt:
Bài báo trình bày kết quả dự đoán tốc độ phát triển của vi tảo Chlorella vulgaris trên bề mặt vữa sử dụng phương pháp máy học. Các biến số đầu vào bao gồm loại phụ gia khoáng được sử dụng, hàm lượng phụ gia khoáng và thời gian vi tảo phát triển. Dữ liệu đầu ra là diện tích bề mặt mẫu vữa bị tảo bao phủ sau các thời gian phát triển. Hai phương pháp máy học được sử sụng là mạng trí tuệ nhân tạo Artificial Neural Network (ANN) và Least Square Support Vector Machine (LS-SVM). Kết quả cho thấy phương pháp LS-SVM dự đoán chính xác hơn nhiều so với phương pháp ANN.
Tạp chí liên quan
- Chính sách thuế bất động sản ở Việt Nam : nhận diện bất cập và đề xuất một số giải pháp
- Kiến trúc tham chiếu chuyên ngành đa dạng sinh học trong hệ thống thông tin lĩnh vực môi trường
- Tối ưu hóa quá trình tiền xử lý bã mía bằng axit formic phục vụ cho sản xuất ethanol sinh học
- Nghiên cứu thu hồi nitơ và photpho từ nước thải chế biến thủy sản bằng công nghệ kết tủa struvite
- Tình hình thực hiện chỉ số hoạt động môi trường (EPI) của Việt Nam năm 2024