Sử dụng phương pháp học máy dự đoán tốc độ phát triển của tảo Chlorella vulgaris trên bề mặt vữa
Tác giả: Trần Thu Hiền
Số trang:
Tr. 9-15
Tên tạp chí:
Khoa học & Công nghệ Đại học Duy Tân
Số phát hành:
Số 3(40)
Kiểu tài liệu:
Tạp chí trong nước
Nơi lưu trữ:
209 Phan Thanh
Mã phân loại:
624
Ngôn ngữ:
Tiếng Việt
Tóm tắt:
Bài báo trình bày kết quả dự đoán tốc độ phát triển của vi tảo Chlorella vulgaris trên bề mặt vữa sử dụng phương pháp máy học. Các biến số đầu vào bao gồm loại phụ gia khoáng được sử dụng, hàm lượng phụ gia khoáng và thời gian vi tảo phát triển. Dữ liệu đầu ra là diện tích bề mặt mẫu vữa bị tảo bao phủ sau các thời gian phát triển. Hai phương pháp máy học được sử sụng là mạng trí tuệ nhân tạo Artificial Neural Network (ANN) và Least Square Support Vector Machine (LS-SVM). Kết quả cho thấy phương pháp LS-SVM dự đoán chính xác hơn nhiều so với phương pháp ANN.
Tạp chí liên quan
- Kiểm soát giao dịch với người có liên quan theo Luật Các tổ chức tín dụng năm 2024
- Quyền tự bảo vệ nhãn hiệu trên sàn giao dịch thương mại điện tử và kiến nghị hoàn thiện pháp luật
- Xác định nơi thành lập của doanh nghiệp thương mại điện tử xuyên biên giới - Thách thức và giải pháp
- Một số kiến nghị hoàn thiện pháp luật Việt Nam về lạm dụng vị trí thống lĩnh thị trường
- Một số kinh nghiệm của Trung Quốc về tuyển chọn, bổ nhiệm thẩm phán, kiểm sát viên và luật sư