Ứng dụng mô hình dữ liệu hỗn hợp trong dự báo tăng trưởng GDP của Việt Nam
Nhóm Tác giả: Hoàng Việt Phương, Trịnh Thị Thơm, Trần Thanh Hoa, Lê Hoàng Quân, Mai Thị Lan Hương, Phạm Đức AnhTóm tắt:
Bài viết ứng dụng mô hình dữ liệu hỗn hợp dựa trên sự kết hợp các dữ liệu tần suất cao ( ngày, tuần, tháng) để dự báo tăng trưởng GDP của Việt Nam ở tần suất thấp (quý, năm). Dữ liệu đầu vào bao gồm các biến đại diện giá cả, cung cầu và thị trường tiền tệ - ngân hàng; trong khi dạng hàm ảnh hưởng tối ưu được lựa chọn từ quá trình kiểm định các phương trình hàm bước, trễ phân phối đa thức và MIDAS không ràng buộc. Kết quả cho thấy, tăng trưởng GDP của VN tiếp tục hồi phục trong giai đoạn quý IV/2020- quý I/2021 so với giai đoạn Quý 1/2020-quý 3/2020. Với mức sai số thấp thu được từ dự báo với mô hình MIDAS, bài viết khẳng định việc phát triển lớp mô hình này là đúng hướng, các thông tin đầu vào được lựa chọn phù hợp.
- Khoa học và công nghệ phục vụ tăng trưởng xanh, kinh tế tuần hoàn, giảm phát thải khí nhà kính tại Việt Nam
- Máy tính lượng tử, cơ hội và thách thức đối với an toàn an ninh
- Trắc nghiệm thích ứng trên máy tính: Giải pháp mới đánh giá năng lực thí sinh
- Nghiên cứu hóa học về lipid và phát triển các chuỗi sản phẩm từ sinh vật biển Việt Nam
- Ứng dụng mô hình quản trị tinh gọn tích hợp số hóa dịch vụ khám chữa bệnh ngoại trú