Ứng dụng mô hình dữ liệu hỗn hợp trong dự báo tăng trưởng GDP của Việt Nam
Nhóm Tác giả: Hoàng Việt Phương, Trịnh Thị Thơm, Trần Thanh Hoa, Lê Hoàng Quân, Mai Thị Lan Hương, Phạm Đức AnhTóm tắt:
Bài viết ứng dụng mô hình dữ liệu hỗn hợp dựa trên sự kết hợp các dữ liệu tần suất cao ( ngày, tuần, tháng) để dự báo tăng trưởng GDP của Việt Nam ở tần suất thấp (quý, năm). Dữ liệu đầu vào bao gồm các biến đại diện giá cả, cung cầu và thị trường tiền tệ - ngân hàng; trong khi dạng hàm ảnh hưởng tối ưu được lựa chọn từ quá trình kiểm định các phương trình hàm bước, trễ phân phối đa thức và MIDAS không ràng buộc. Kết quả cho thấy, tăng trưởng GDP của VN tiếp tục hồi phục trong giai đoạn quý IV/2020- quý I/2021 so với giai đoạn Quý 1/2020-quý 3/2020. Với mức sai số thấp thu được từ dự báo với mô hình MIDAS, bài viết khẳng định việc phát triển lớp mô hình này là đúng hướng, các thông tin đầu vào được lựa chọn phù hợp.
- Phát huy năng lực của đội ngũ cán bộ khoa học - công nghệ đóng góp xây dựng thành phố
- Đánh giá nguồn nhân lực địa phương nhằm phát triển du lịch nông thôn tại huyện Vĩnh Thạnh, thành phố Cần Thơ
- Đặc điểm ngữ nghĩa lớp từ tâm lí - tình cảm trong truyện ngắn Nguyễn Ngọc Tư
- Chemical composition and antifungal activity of Annona reticulata L.
- Identification of the potential compounds for inhibition CD44 target of human breast cancer stem cells by docking method