Constrained optimization using swarm intelligence integrated with Deb’s feasibility rules developed in Python = Giải bài toán tối ưu hóa ràng buộc sử dụng trí tuệ bầy đàn kết hợp quy tắc khả thi của Deb được phát triển bằng Python
Tác giả: Hoang Nhat Duc, Tran Xuan Linh, Tran Van Duc
Số trang:
P. 3-7
Số phát hành:
Số 01(50)
Kiểu tài liệu:
Tạp chí trong nước
Nơi lưu trữ:
03 Quang Trung
Mã phân loại:
005
Ngôn ngữ:
Tiếng Anh
Từ khóa:
Swarm intelligence, particle swarm optimization, constrained optimization, feasibility rules, metaheuristic
Chủ đề:
Python
Tóm tắt:
This study utilizes Particle Swarm Optimization (PSO) and Deb’s feasibility rules to construct a method for constrained optimization named as frPSO. PSO is a capable swarm intelligence based metaheuristic and Deb’s feasibility rules is an effective constraint-handling method. This integrated tool is developed in Python. frPSO has been tested with three basic constrained optimization problems.
Tạp chí liên quan
- Đánh giá sự ảnh hưởng của quản trị nguồn nhân lực trong trạng thái chuyển đổi số tòi hiệu quả hoạt động xét dưới góc độ tài chính của doanh nghiệp nhỏ và vừa trong ngành thương mại và dịch vụ : nghiên cứu trên địa bàn Hà Nội
- Weak two-scale convergence in L2 for a two-dimensional case = Hội tụ hai-kích thước yếu trong L2 cho một trường hợp hai chiều
- Strong two-scale convergence for a two-dimensional case = Hội tụ hai-kích thước mạnh cho một trường hợp hai chiều
- Applications of Google OR-Tools in solving construction management linear optimization problems = Ứng dụng công cụ Google OR-Tools trong giải các bài toán tối ưu hóa tuyến tính trong quản lý dự án xây dựng
- Transition nodal basis functions in p-adaptive finte element methods = Hàm nút cơ sở chuyển giao dùng trong phương pháp phần tử hữu hạn thích nghi loại p





