Mô hình học sâu phát hiện và nhận diện mã container áp dụng trong vận hành cảng thông minh
Tác giả: Mã Chí Hiếu, Trần Quang Trường, Lê Tuấn AnhTóm tắt:
Thị giác máy tính, một lĩnh vực quan trọng trong trí tuệ nhân tạo, đang ngày càng phát triển mạnh mẽ và được ứng dụng rộng rãi trong nhiều ngành công nghiệp. Dựa trên kiến trúc mạng nơ-ron tích chập (CNN), nhiều mô hình tiên tiến đã được xây dựng để giải quyết các vấn đề như phát hiện đối tượng, phân đoạn hình ảnh, nhận diện ký tự quang học (OCR)... Trong số đó, YOLO nổi bật với khả năng phát hiện đối tượng nhanh và chính xác; và EasyOCR là một công cụ hiệu quả trong nhận dạng ký tự với độ chính xác cao. Nghiên cứu hiện tại tập trung vào việc phát hiện và nhận diện mã thông qua sự kết hợp giữa mô hình YOLOv11 và EasyOCR. Nội dung nghiên cứu bao gồm xây dựng tập dữ liệu, huấn luyện mô hình và đánh giá hiệu suất của mô hình. Kết quả thực nghiệm cho thấy mô hình đề xuất đạt độ chính xác trên 90%, chứng tỏ tính khả thi và tiềm năng ứng dụng trong các hệ thống thực tế trong các cảng thông minh.
- Mối liên quan giữa một số đặc điểm lâm sàng và giải phẫu bệnh của sarcôm tạo xương với dấu ấn SATB2
- Đặc điểm mô bệnh học và hóa mô miễn dịch sarcoma màng hoạt dịch tại Bệnh viện K
- Nghiên cứu dấu hiệu lâm sàng và đặc điểm giải phẫu bệnh của bệnh viêm da cơ
- Đánh giá biểu hiện của thụ thể androgen trên bệnh ung thư vú bộ ba âm tính bằng phương pháp hóa mô miễn dịch
- Nghiên cứu đặc điểm hoá mô miễn dịch của EGFR và các dấu ấn CK, p63, Vimentin trong ung thư biểu mô vú dị sản tại Bệnh viện K





