Mô hình học sâu phát hiện và nhận diện mã container áp dụng trong vận hành cảng thông minh
Tác giả: Mã Chí Hiếu, Trần Quang Trường, Lê Tuấn AnhTóm tắt:
Thị giác máy tính, một lĩnh vực quan trọng trong trí tuệ nhân tạo, đang ngày càng phát triển mạnh mẽ và được ứng dụng rộng rãi trong nhiều ngành công nghiệp. Dựa trên kiến trúc mạng nơ-ron tích chập (CNN), nhiều mô hình tiên tiến đã được xây dựng để giải quyết các vấn đề như phát hiện đối tượng, phân đoạn hình ảnh, nhận diện ký tự quang học (OCR)... Trong số đó, YOLO nổi bật với khả năng phát hiện đối tượng nhanh và chính xác; và EasyOCR là một công cụ hiệu quả trong nhận dạng ký tự với độ chính xác cao. Nghiên cứu hiện tại tập trung vào việc phát hiện và nhận diện mã thông qua sự kết hợp giữa mô hình YOLOv11 và EasyOCR. Nội dung nghiên cứu bao gồm xây dựng tập dữ liệu, huấn luyện mô hình và đánh giá hiệu suất của mô hình. Kết quả thực nghiệm cho thấy mô hình đề xuất đạt độ chính xác trên 90%, chứng tỏ tính khả thi và tiềm năng ứng dụng trong các hệ thống thực tế trong các cảng thông minh.
- Đánh giá tình trạng nhiễm trùng huyết tại đơn vị Ghép tế bào gốc- khoa Huyết học - bệnh viện Chợ Rẫy từ năm 2017 đến 6 tháng đầu năm 2024
- Đánh giá đáp ứng sau hóa trị tân hỗ trợ bằng phác đồ Docetaxel, Carboplatin và Trastuzumab ở bệnh nhân ung thư vú có thụ thể HER2 dương tính giai đoạn II, III
- Nghiên cứu tỉ lệ cắt tuyến phó giáp không chủ ý trong phẫu thuật cắt giáp và nạo hạch cổ nhóm vi tại Bệnh viện Ung Bướu Thành phố Hồ Chí Minh năm 2023
- Vai trò của thời gian nhân đôi thyroglobulin trong đánh giá tái phát, di căn ở bệnh nhân ung thư tuyến giáp thể biệt hóa
- Đánh giá bước đầu phẫu thuật đoạn chậu trong ung thư phụ khoa initial





