Phát hiện lỗ hổng mã nguồn theo hướng tiếp cận học sâu
Tác giả: Hồ Lê Viết Nin, Phan Long, Ngô Văn Hiếu
Số trang:
Tr.1-13
Tên tạp chí:
Khoa học và Công nghệ
Số phát hành:
Số 4 (71)
Kiểu tài liệu:
Tạp chí điện tử
Nơi lưu trữ:
CSDL điện tử
Mã phân loại:
005
Ngôn ngữ:
Tiếng Việt
Từ khóa:
Source Code Vulnerability, deep learning, codeBERT, GraphCodeBERT, GPT-4
Chủ đề:
Mã nguồn mở
Tóm tắt:
Bài báo này trình bày một tổng quan có hệ thống về các kiến trúc phổ biến trong lĩnh vực này, bao gồm: Convolutional Neural Network, Long Short-Term Memory, Bidirectional Long Short-Term Memory, Self-Supervised Learning, cùng với các mô hình Transformer hiện đại như CodeBERT và CodeT5. Thông qua việc phân tích hiệu suất các mô hình dựa trên các tiêu chí như độ chính xác, F1-score và chi phí tính toán, bài báo nhằm cung cấp cơ sở định hướng cho việc lựa chọn mô hình phù hợp trong bài toán phát hiện lỗ hổng mã nguồn.
Tạp chí liên quan
- Mối liên quan giữa một số đặc điểm lâm sàng và giải phẫu bệnh của sarcôm tạo xương với dấu ấn SATB2
- Đặc điểm mô bệnh học và hóa mô miễn dịch sarcoma màng hoạt dịch tại Bệnh viện K
- Nghiên cứu dấu hiệu lâm sàng và đặc điểm giải phẫu bệnh của bệnh viêm da cơ
- Đánh giá biểu hiện của thụ thể androgen trên bệnh ung thư vú bộ ba âm tính bằng phương pháp hóa mô miễn dịch
- Nghiên cứu đặc điểm hoá mô miễn dịch của EGFR và các dấu ấn CK, p63, Vimentin trong ung thư biểu mô vú dị sản tại Bệnh viện K





