Phát triển luật học dùng cho mạng nơ ron tế bào bậc cao và khả năng ứng dụng trong xử lý ảnh
Tác giả: Dương Đức Anh, Nguyễn Quang Hoan, Nguyễn Hồng VũTóm tắt:
Mục đích của bài viết này là cải tiến một thuật toán học, được phát triển từ thuật toán học Perceptron hồi quy và thuật toán nhận dạng mẫu (dành cho Mạng nơ ron tế bào bậc cao). Phương pháp nghiên cứu của chúng tôi là phát triển lý thuyết học trong mạng nơ ron tế bào bậc cao và thử nghiệm các thuật toán. Kết quả nghiên cứu là hai thuật toán được cải tiến và bộ trọng số, ảnh xử lý được bằng hai thuật toán đó. Tập hợp các trọng số thu được từ thuật toán đã phát triển (tên là Thuật toán học Perceptron hồi quy bậc hai: SORPLA) có thể được sử dụng làm bộ lọc hoặc hạt nhân cho các vấn đề trong xử lý ảnh. Kết luận của bài báo như sau: Thứ nhất, sửa đổi thuật toán RPLA, bổ sung các mẫu bậc cao A và các mẫu bậc cao B; Thứ hai, cải thiện thuật toán xử lý hình ảnh PyCNN. Ngoài ra, bài báo cũng đề xuất khả năng ứng dụng của SORPLA trong phát hiện biên ảnh bằng cách sử dụng tập các trọng số thu được từ thuật toán đã phát triển cho Mạng nơ ron tế bào bậc cao.
- Phân tích và khuyến nghị hoàn thiện tiêu chuẩn gối cầu TCVN 13594-8:2023 cho cầu đường sắt tốc độ cao có yêu cầu kháng chấn
- Phân tích tai nạn giao thông liên quan đến người đi bộ ở nước ta bằng Python
- Giải pháp giếng cát đóng túi trong xử lý nền đất yếu và khả năng ứng dụng tại Việt Nam
- Nâng cao hiệu quả việc thực hành tay nghề thi công cơ bản và công tác sản xuất kết hợp sinh viên Khoa Công trình - Trường Đại học Công nghệ Giao thông vận tải
- Nỗ lực của nhà thầu hướng đến thành công dự án nhà công nghiệp : phân tích nghiên cứu liên quan





