Mức độ hiệu quả của các mô hình học máy tree-based trong phát hiện giao dịch gian lận thẻ tín dụng
Tác giả: Nguyễn Minh Nhật, Đào Lê Kiều OanhTóm tắt:
Nghiên cứu này tập trung vào việc đánh giá và so sánh hiệu quả của các mô hình học máy dựa trên cây (Tree-based machine learning models) trong việc dự báo gian lận thẻ tín dụng. Các mô hình được xét gồm Decision Tree, Random Forest, Gradient Boosting Machines (GBM) và Extreme Gradient Boosting (XGBoost). Bộ dữ liệu sử dụng cho nghiên cứu này bao gồm 568,630 giao dịch thẻ tín dụng, với các thuộc tính từ V1 đến V28 được biến đổi thông qua phân tích thành phần chính (PCA) để bảo vệ thông tin cá nhân. Nghiên cứu này sử dụng ma trận nhầm lẫn (Confusion Matrix) và các chỉ số đánh giá như Độ chính xác, Độ nhạy (Recall), Precision và F1 Score để đánh giá hiệu quả của mỗi mô hình. Kết quả cho thấy rằng Random Forest và XGBoost đều có hiệu suất ấn tượng, đặc biệt Random Forest cho thấy sự vượt trội hơn trong việc giảm thiểu báo động giả và phát hiện chính xác các giao dịch gian lận.
- So sánh các khung báo cáo ESG và khuyến nghị đối với các doanh nghiệp xây dựng Việt Nam
- Cấu trúc tài chính trong đảm bảo an ninh tài chính tại các công ty vận tải Việt Nam
- Thanh khoản và rủi ro kiệt quệ tài chính : góc nhìn đa ngành từ các doanh nghiệp niêm yết Việt Nam
- Các nhân tố ảnh hưởng đến tăng trưởng bền vững của các doanh nghiệp ngành nhựa niêm yết tại Việt Nam
- Mối quan hệ giữa các thành phần hàng tồn kho và hiệu quả tài chính của doanh nghiệp : bằng chứng thực nghiệm từ các doanh nghiệp sản xuất vật liệu xây dựng niêm yết





