Mức độ hiệu quả của các mô hình học máy tree-based trong phát hiện giao dịch gian lận thẻ tín dụng
Tác giả: Nguyễn Minh Nhật, Đào Lê Kiều OanhTóm tắt:
Nghiên cứu này tập trung vào việc đánh giá và so sánh hiệu quả của các mô hình học máy dựa trên cây (Tree-based machine learning models) trong việc dự báo gian lận thẻ tín dụng. Các mô hình được xét gồm Decision Tree, Random Forest, Gradient Boosting Machines (GBM) và Extreme Gradient Boosting (XGBoost). Bộ dữ liệu sử dụng cho nghiên cứu này bao gồm 568,630 giao dịch thẻ tín dụng, với các thuộc tính từ V1 đến V28 được biến đổi thông qua phân tích thành phần chính (PCA) để bảo vệ thông tin cá nhân. Nghiên cứu này sử dụng ma trận nhầm lẫn (Confusion Matrix) và các chỉ số đánh giá như Độ chính xác, Độ nhạy (Recall), Precision và F1 Score để đánh giá hiệu quả của mỗi mô hình. Kết quả cho thấy rằng Random Forest và XGBoost đều có hiệu suất ấn tượng, đặc biệt Random Forest cho thấy sự vượt trội hơn trong việc giảm thiểu báo động giả và phát hiện chính xác các giao dịch gian lận.
- Thực trạng phát triển kinh tế tư nhân ở Việt Nam : thành tựu, thách thức và triển vọng
- Những động lực giúp Việt Nam tăng trưởng 8% trong năm 2025 : thực trạng và giải pháp
- Đẩy mạnh giải ngân vốn đầu tư công đối với các dự án trong ngành đường sắt ở Việt Nam
- Nghiên cứu mối quan hệ giữa phân cấp tài khóa và chất lượng dịch vụ công tại Việt Nam
- Ứng dụng trí tuệ nhân tạo (AI) trong xây dựng và quản trị thương hiệu thời đại số tại Việt Nam