Mức độ hiệu quả của các mô hình học máy tree-based trong phát hiện giao dịch gian lận thẻ tín dụng
Tác giả: Nguyễn Minh Nhật, Đào Lê Kiều OanhTóm tắt:
Nghiên cứu này tập trung vào việc đánh giá và so sánh hiệu quả của các mô hình học máy dựa trên cây (Tree-based machine learning models) trong việc dự báo gian lận thẻ tín dụng. Các mô hình được xét gồm Decision Tree, Random Forest, Gradient Boosting Machines (GBM) và Extreme Gradient Boosting (XGBoost). Bộ dữ liệu sử dụng cho nghiên cứu này bao gồm 568,630 giao dịch thẻ tín dụng, với các thuộc tính từ V1 đến V28 được biến đổi thông qua phân tích thành phần chính (PCA) để bảo vệ thông tin cá nhân. Nghiên cứu này sử dụng ma trận nhầm lẫn (Confusion Matrix) và các chỉ số đánh giá như Độ chính xác, Độ nhạy (Recall), Precision và F1 Score để đánh giá hiệu quả của mỗi mô hình. Kết quả cho thấy rằng Random Forest và XGBoost đều có hiệu suất ấn tượng, đặc biệt Random Forest cho thấy sự vượt trội hơn trong việc giảm thiểu báo động giả và phát hiện chính xác các giao dịch gian lận.
- Chất lượng cuộc sống của người bệnh sau phẫu thuật thay khớp gối toàn phần tại Bệnh viện Hữu nghị Việt Đức năm 2025
- Đặc điểm dịch tễ học, lâm sàng, thực trạng sơ cứu và xử trí ban đầu bệnh nhân rắn độc cắn tại Bệnh viện Hữu nghị Đa khoa Nghệ An
- Giá trị của thang điểm Rajan's Heart Failure (R-hf) trong tiên lượng kết cục ngắn hạn ở bệnh nhân suy tim mất bù cấp
- Đánh giá chức năng gan và thận ở bệnh nhân HIV điều trị ARV tại Bệnh viện Thành phố Thủ Đức trong giai đoạn 2023-2024 và các yếu tố liên quan
- Tỷ lệ mắc và một số nguyên nhân gây tổn thương thận cấp ở trẻ sơ sinh tại trung tâm sơ sinh, Bệnh viện Nhi Trung ương