Mức độ hiệu quả của các mô hình học máy tree-based trong phát hiện giao dịch gian lận thẻ tín dụng
Tác giả: Nguyễn Minh Nhật, Đào Lê Kiều OanhTóm tắt:
Nghiên cứu này tập trung vào việc đánh giá và so sánh hiệu quả của các mô hình học máy dựa trên cây (Tree-based machine learning models) trong việc dự báo gian lận thẻ tín dụng. Các mô hình được xét gồm Decision Tree, Random Forest, Gradient Boosting Machines (GBM) và Extreme Gradient Boosting (XGBoost). Bộ dữ liệu sử dụng cho nghiên cứu này bao gồm 568,630 giao dịch thẻ tín dụng, với các thuộc tính từ V1 đến V28 được biến đổi thông qua phân tích thành phần chính (PCA) để bảo vệ thông tin cá nhân. Nghiên cứu này sử dụng ma trận nhầm lẫn (Confusion Matrix) và các chỉ số đánh giá như Độ chính xác, Độ nhạy (Recall), Precision và F1 Score để đánh giá hiệu quả của mỗi mô hình. Kết quả cho thấy rằng Random Forest và XGBoost đều có hiệu suất ấn tượng, đặc biệt Random Forest cho thấy sự vượt trội hơn trong việc giảm thiểu báo động giả và phát hiện chính xác các giao dịch gian lận.
- Phân tích và khuyến nghị hoàn thiện tiêu chuẩn gối cầu TCVN 13594-8:2023 cho cầu đường sắt tốc độ cao có yêu cầu kháng chấn
- Phân tích tai nạn giao thông liên quan đến người đi bộ ở nước ta bằng Python
- Giải pháp giếng cát đóng túi trong xử lý nền đất yếu và khả năng ứng dụng tại Việt Nam
- Nâng cao hiệu quả việc thực hành tay nghề thi công cơ bản và công tác sản xuất kết hợp sinh viên Khoa Công trình - Trường Đại học Công nghệ Giao thông vận tải
- Nỗ lực của nhà thầu hướng đến thành công dự án nhà công nghiệp : phân tích nghiên cứu liên quan