Nghiên cứu chẩn đoán hư hỏng kết cấu cầu giàn thép sử dụng mạng kết hợp 1DCNN-LSTM
Tác giả: Trần Việt HưngTóm tắt:
Bài báo trình bày một phương pháp tiếp cận mới để chẩn đoán hư hỏng trong kết cấu thông qua việc áp dụng mô hình học sâu (Deep Learning - DL) kết hợp giữa khả năng trích xuất các đặc trưng của mạng nơ-ron tích chập một chiều (One Dimensional Convolutional Neural Network - 1DCNN) và khả năng xử lý dữ liệu chuỗi thời gian mạng bộ nhớ dài ngắn hạn (Long Short-Term Memory - LSTM). Mặc dù 1DCNN có ưu thế trong việc trích xuất các đặc trưng từ dữ liệu nhưng gặp hạn chế khi xử lý các mối quan hệ dài hạn trong chuỗi thời gian. LSTM lại thể hiện khả năng phân tích, học các quan hệ dài hạn, nhưng gặp khó khăn trong việc cân bằng các trọng số tính toán và tốc độ xử lý còn chậm. Để kiểm chứng hiệu quả của phương pháp đề xuất, nghiên cứu được thực hiện bằng cách sử dụng dữ liệu theo thời gian thu được từ hệ thống cảm biến gia tốc trên cầu giàn thép Chương Dương. Kết quả cho thấy hiệu quả của phương pháp đề xuất vượt trội hơn hai mô hình học sâu riêng lẻ - 1DCNN và LSTM, đạt độ chính xác lần lượt là 91,6%, 84,5% và 81,4% trên tập dữ liệu kiểm tra.
- Đánh giá tình trạng nhiễm trùng huyết tại đơn vị Ghép tế bào gốc- khoa Huyết học - bệnh viện Chợ Rẫy từ năm 2017 đến 6 tháng đầu năm 2024
- Đánh giá đáp ứng sau hóa trị tân hỗ trợ bằng phác đồ Docetaxel, Carboplatin và Trastuzumab ở bệnh nhân ung thư vú có thụ thể HER2 dương tính giai đoạn II, III
- Nghiên cứu tỉ lệ cắt tuyến phó giáp không chủ ý trong phẫu thuật cắt giáp và nạo hạch cổ nhóm vi tại Bệnh viện Ung Bướu Thành phố Hồ Chí Minh năm 2023
- Vai trò của thời gian nhân đôi thyroglobulin trong đánh giá tái phát, di căn ở bệnh nhân ung thư tuyến giáp thể biệt hóa
- Đánh giá bước đầu phẫu thuật đoạn chậu trong ung thư phụ khoa initial