Ứng dụng các thuật toán học máy xác định độ sâu sau nước nhảy trong kênh chữ nhật có xét đến ảnh hưởng của lực ma sát
Tác giả: Hồ Việt HùngTóm tắt:
Độ sâu sau nước nhảy là một yếu tố quan trọng, ảnh hưởng rất lớn đến độ sâu và chiều dài của bể tiêu năng. Việc tính toán chính xác độ sâu này là rất cần thiết và có ý nghĩa thực tiễn cao. Do đó, nghiên cứu này đã thiết lập và đánh giá khả năng dự báo độ sâu sau nước nhảy của sáu mô hình học máy (ML), gồm có: Rừng cây ngẫu nhiên (Random Forest - RT), Tăng cường thích ứng (Adaptive Boosting – Ada), Tăng cường tốc độ (Cat Boosting – CB), Tăng cường độ dốc (Gradient Boosting - GB), Cây bổ sung (Extra Trees - ET) và Máy Vector hỗ trợ (Support Vector Machine – SVM). Trong nghiên cứu này, định lý π-Buckingham đã được sử dụng để tìm năm tham số không thứ nguyên làm đầu vào và đầu ra của mô hình. Kết quả nghiên cứu cho thấy, các mô hình ET, GB, SVR, Ada có xét đến ảnh hưởng của độ nhám và chiều rộng lòng dẫn, tính nhớt của chất lỏng, có sai số nhỏ hơn so với công thức Belanger (bỏ qua lực ma sát) và các công thức kinh nghiệm khác. Khi kiểm định, các mô hình này đều có hệ số Nash đạt trên 0,996. Mô hình ET cho kết quả tốt nhất, sau đó là GB, SVR, Ada, RF, CB, theo thứ tự giảm dần. Như vậy, có thể áp dụng mô hình ET để tính toán độ sâu sau nước nhảy trong kênh lăng trụ đáy bằng, mặt cắt chữ nhật
- Applications of Google OR-Tools in solving construction management linear optimization problems = Ứng dụng công cụ Google OR-Tools trong giải các bài toán tối ưu hóa tuyến tính trong quản lý dự án xây dựng
- Experimental study on influence of rice husk ash on mortar compressive strength at different temperatures = Nghiên cứu thực nghiệm ảnh hưởng của tro trấu tới cường độ của vữa ở các nhiệt độ khác nhau
- Artificial neural network with adaptive moment estimation training approaches for prediction of punching shear capacity of steel fibre reinforced concrete slabs = Sử dụng mạng nơ-ron thần kinh nhân tạo với phương pháp huấn luyện ước tính mô men tự thích n
- Influence of rice husk ash on mortar compressive strength at different temperatures : machine learning based modelling = Ảnh hưởng của tro trấu tới cường độ của vữa ở các nhiệt độ khác nhau : mô hình hóa bằng máy học
- Image processing-based automatic gradation of stone aggregates = Tự động hóa việc xác định cấp phối hạt của cốt liệu đá sử dụng kỹ thuật xử lý ảnh





