Sử dụng mô hình hồi quy mạng lưới nơ ron sâu để dự đoán cường độ chịu nén của bê tông tự lèn = Using deep neural network regression model to predict compressive strength of self-compacting concrete
Tác giả: Trần Thu Hiền, Phan Ngọc Trung, Hoàng Nhật Đức
Số trang:
Tr. 3-10
Số phát hành:
Số 03 (64)
Kiểu tài liệu:
Tạp chí trong nước
Nơi lưu trữ:
03 Quang Trung
Mã phân loại:
510
Ngôn ngữ:
Tiếng Việt
Từ khóa:
Mô hình hồi quy mạng lưới nơ ron sâu, cường độ chịu nén, bê tông tự lèn
Chủ đề:
Bê tông xây dựng
Tóm tắt:
Mô hình hồi quy mạng lưới nơ ron sâu (DNNR) đã được sử dụng để dự đoán cường độ chịu nén của bê tông tự lèn. Mô hình được đào tạo và kiểm tra trên tổng số 327 điểm dữ liệu. Các biến số đầu vào bao gồm 6 hàm lượng thành phần và tuổi của bê tông theo ngày. Mô hình DNNR đã cho thấy khả năng xác định được các ánh xạ phức tạp giữa biến đầu vào và đầu ra. Kết quả dự đoán cường độ chịu nén của bê tông tự lèn có độ chính xác cao so với kết quả thực nghiệm.
Tạp chí liên quan
- Bảo đảm quyền tham gia của trẻ em theo pháp luật quốc tế và pháp luật Việt Nam
- Tòa án Thương mại Quốc tế - bước chuyển mới trong giải quyết tranh chấp thương mại quốc tế
- Thu thập chứng cứ bằng biện pháp lấy lời khai của người bị kiện trong tố tụng hành chính
- Kinh nghiệm quốc tế về quản lý tín chỉ carbon và trao đổi hạn ngạch phát thải khí nhà kính
- Pháp luật Việt Nam về an ninh con người của phạm nhân trong bối cảnh hội nhập quốc tế và một số khuyến nghị hoàn thiện