Sử dụng mô hình hồi quy mạng lưới nơ ron sâu để dự đoán cường độ chịu nén của bê tông tự lèn = Using deep neural network regression model to predict compressive strength of self-compacting concrete
Tác giả: Trần Thu Hiền, Phan Ngọc Trung, Hoàng Nhật Đức
Số trang:
Tr. 3-10
Số phát hành:
Số 03 (64)
Kiểu tài liệu:
Tạp chí trong nước
Nơi lưu trữ:
03 Quang Trung
Mã phân loại:
510
Ngôn ngữ:
Tiếng Việt
Từ khóa:
Mô hình hồi quy mạng lưới nơ ron sâu, cường độ chịu nén, bê tông tự lèn
Chủ đề:
Bê tông xây dựng
Tóm tắt:
Mô hình hồi quy mạng lưới nơ ron sâu (DNNR) đã được sử dụng để dự đoán cường độ chịu nén của bê tông tự lèn. Mô hình được đào tạo và kiểm tra trên tổng số 327 điểm dữ liệu. Các biến số đầu vào bao gồm 6 hàm lượng thành phần và tuổi của bê tông theo ngày. Mô hình DNNR đã cho thấy khả năng xác định được các ánh xạ phức tạp giữa biến đầu vào và đầu ra. Kết quả dự đoán cường độ chịu nén của bê tông tự lèn có độ chính xác cao so với kết quả thực nghiệm.
Tạp chí liên quan
- Một số giải pháp hoàn thiện công tác quản trị chất lượng toàn diện tại ngân hàng
- Kinh nghiệm quản lý nhà nước đối với doanh nghiệp có vốn đầu tư trực tiếp nước ngoài ở một số địa phương và bài học cho chính quyền tỉnh Bắc Ninh
- Áp dụng mô hình BSC trong đánh giá hiệu quả hoạt động của doanh nghiệp tại Việt Nam : nghiên cứu trường hợp sản xuất
- Ứng dụng công nghệ thông tin vào hoạt động ngân hàng: Kinh nghiệm các nước trên thế giới và gợi ý cho Việt Nam
- Cơ hội cho phát triển thị trường bất động sản lành mạnh, bền vững khi Luật Đất đai, Luật Kinh doanh bất động sản và Luật Nhà ở mới có hiệu lực