Xây dựng mô hình dự báo rủi ro vỡ nợ bằng các mô hình học máy: Nghiên cứu thực nghiệm trên các doanh nghiệp Việt Nam
Tác giả: Nguyễn Minh Nhật, Trần Kim Long, Lê Hoàng Anh
Số trang:
Tr. 71-81
Số phát hành:
Số 216 - Tháng 3
Kiểu tài liệu:
Tạp chí trong nước
Nơi lưu trữ:
209 Phan Thanh
Mã phân loại:
332
Ngôn ngữ:
Tiếng Việt
Từ khóa:
Rừng ngẫu nhiên, mô hình cây quyết định, thuật toán Boosting
Chủ đề:
Rủi ro vỡ nợ
Tóm tắt:
Sử dụng các mô hình máy học dựa trên thuật toán cây quyết định để dự báo RRVN của các doanh nghiệp tại Việt Nam giai đoạn 2009–2020. Kết quả cho thấy mô hình Random Forest và Gradient Boosting là hai mô hình có kết quả vượt trội so với mô hình Logistic trên tất cả các tiêu chí đánh giá như Confusion Matrix AUC, tỷ lệ Accuracy, tỷ lệ Precision, tỷ lệ Recall và Điểm số F1. Trong đó, mô hình Random Forest có xu hướng vượt trội hơn so với mô hình Gradient Boosting trên các chỉ tiêu đánh giá. Hơn nữa, kết quả của mô hình cũng gợi ý những biến dự báo quan trọng trong việc xây dựng mô hình dự báo RRVN.
Tạp chí liên quan
- Phân tích và khuyến nghị hoàn thiện tiêu chuẩn gối cầu TCVN 13594-8:2023 cho cầu đường sắt tốc độ cao có yêu cầu kháng chấn
- Phân tích tai nạn giao thông liên quan đến người đi bộ ở nước ta bằng Python
- Giải pháp giếng cát đóng túi trong xử lý nền đất yếu và khả năng ứng dụng tại Việt Nam
- Nâng cao hiệu quả việc thực hành tay nghề thi công cơ bản và công tác sản xuất kết hợp sinh viên Khoa Công trình - Trường Đại học Công nghệ Giao thông vận tải
- Nỗ lực của nhà thầu hướng đến thành công dự án nhà công nghiệp : phân tích nghiên cứu liên quan





