Nghiên cứu phát triển hệ thống tính toán dự báo và thu thập dữ liệu nghiên cứu sâu keo mùa thu trên cây ngô
Tác giả: Hoàng Thị Điệp, Nguyễn Thị Ánh Dương, Nguyễn Kiến Thái Dương, Nguyễn Duy Vũ, Lưu Thị Quỳnh Trang, Trần Thị Thu Phương, Phạm Minh TriểnTóm tắt:
Trong nghiên cứu này, các tác giả đề xuất phát triển hệ thống phần mềm iFAWcast xây dựng trên nền tảng web và mobile, tự động dự báo, cảnh báo và thu thập dữ liệu nghiên cứu FAW trên cây ngô ở Việt Nam. Hệ thống có 3 thành phần chính: (i) Công cụ dự báo, cảnh báo dịch FAW tự động trên nền tảng web; (ii) Công cụ quản lý báo cáo nông nghiệp, dự báo, cảnh báo và người dùng trên nền tảng web; (iii) Ứng dụng trên nền tảng mobile cung cấp dịch vụ theo dõi dự báo, cảnh báo dịch FAW đến người nông dân tùy vị trí địa lý. Hệ thống iFAWcast có lõi tính toán tự động cập nhật dự báo thời tiết từ API Visual Crossing, API OpenWeatherMap và dựa trên công thức tổng tích ôn hữu hiệu xây dựng riêng cho FAW trên cây ngô ở Việt Nam. Hệ thống được phát triển và thử nghiệm dựa trên dữ liệu thu thập trực tiếp từ đồng ruộng để kiểm chứng đã cho kết quả với độ chính xác cao, đáng tin cậy.
- Đánh giá hiệu quả kỹ thuật CNV-seq trong chẩn đoán trước sinh các bất thường nhiễm sắc thể ở thai nhi tại Bệnh viện Đại học Y Hà Nội
- Đánh giá kết quả hồi phục chức năng vận động cho người bệnh đột quỵ não tại Bệnh viện Điều dưỡng Phục hồi chức năng Trung ương năm 2023
- Đánh giá giá trị xét nghiệm HPV, tế bào học và đồng sàng lọc trong tầm soát ung thư cổ tử cung
- Đặc điểm lâm sàng, cận lâm sàng của người bệnh viêm gan vi rút E điều trị tại Bệnh viện Bệnh nhiệt đới Trung ương trong năm 2023
- Giá trị của xét nghiệm Xpert MTB/RIF chẩn đoán lao phổi trong mẫu dịch rửa phế quản phế nang tại bệnh viện Đa khoa Đồng Nai





