Xây dựng mô hình học máy được tối ưu hóa bằng thuật toán jellyfish search để dự báo năng suất lao động trên công trường
Tác giả: Võ Huỳnh Kim Chi, Trương Đình Nhật, Nguyễn Thanh Phong, Lê Thị Thùy Linh
Số trang:
Tr. 50-55
Số phát hành:
Tháng 2
Kiểu tài liệu:
Tạp chí trong nước
Nơi lưu trữ:
03 Quang Trung
Mã phân loại:
690
Ngôn ngữ:
Tiếng Việt
Từ khóa:
Jellyfish Search, năng suất lao động, mô hình học máy, tối ưu hóa, dự báo
Chủ đề:
Công trình xây dựng
&
Mô hình học máy
Tóm tắt:
Nghiên cứu này trình bày các so sánh và đánh giá hiệu suất của các mô hình học máy, bao gồm bốn mô hình đơn ANN, SVR, LR, CART và ba mô hình hỗn hợp Voting, Bagging, Stacking.
Tạp chí liên quan
- Thực trạng tài trợ và cơ hội tài chính khí hậu từ Quỹ Khí hậu Xanh cho các nước đang phát triển
- Đánh giá sự hài lòng của du khách đối với ẩm thực đường phố tại thành phố Cần Thơ
- Kinh nghiệm phát triển du lịch ẩm thực của Hàn Quốc và bài học kinh nghiệm cho Việt Nam
- Kinh nghiệm phát triển du lịch địa chất tại công viên địa chất Trung Quốc
- Dự báo phân bố mưa cho các tiểu lưu vực trong lưu vực sông Srêpốk theo mô hình CMIP6