Xây dựng mô hình học máy được tối ưu hóa bằng thuật toán jellyfish search để dự báo năng suất lao động trên công trường
Tác giả: Võ Huỳnh Kim Chi, Trương Đình Nhật, Nguyễn Thanh Phong, Lê Thị Thùy Linh
Số trang:
Tr. 50-55
Số phát hành:
Tháng 2
Kiểu tài liệu:
Tạp chí trong nước
Nơi lưu trữ:
03 Quang Trung
Mã phân loại:
690
Ngôn ngữ:
Tiếng Việt
Từ khóa:
Jellyfish Search, năng suất lao động, mô hình học máy, tối ưu hóa, dự báo
Chủ đề:
Công trình xây dựng
&
Mô hình học máy
Tóm tắt:
Nghiên cứu này trình bày các so sánh và đánh giá hiệu suất của các mô hình học máy, bao gồm bốn mô hình đơn ANN, SVR, LR, CART và ba mô hình hỗn hợp Voting, Bagging, Stacking.
Tạp chí liên quan
- Khoa học và công nghệ phục vụ tăng trưởng xanh, kinh tế tuần hoàn, giảm phát thải khí nhà kính tại Việt Nam
- Máy tính lượng tử, cơ hội và thách thức đối với an toàn an ninh
- Trắc nghiệm thích ứng trên máy tính: Giải pháp mới đánh giá năng lực thí sinh
- Nghiên cứu hóa học về lipid và phát triển các chuỗi sản phẩm từ sinh vật biển Việt Nam
- Ứng dụng mô hình quản trị tinh gọn tích hợp số hóa dịch vụ khám chữa bệnh ngoại trú