Data augmentation analysis of vehicle detection in aerial images
Tác giả: Khang NguyenTóm tắt:
Drones are increasingly used in various application domains including surveillance, agriculture, delivery, search and rescue missions. Object detection in aerial images (captured by drones) gradually gains more interest in computer vision community. However, research activities are still very few in this area due to numerous challenges such as top-view angle, small-scale object, diverse directions, and data imbalance. In this paper, we investigate different data augmentation techniques. Furthermore, we propose combining data augmentation methods to further enhance the performance of the state-of-the-art object detection methods. Extensive experiments on two datasets, namely, AERIAU, and XDUAV, demonstrate that the combination of random cropped and vertical flipped data boosts the performance of object detectors on aerial images.
- Ứng dụng công nghệ chuỗi khối trong nghiệp vụ ngân hàng tại Việt Nam: Thực trạng và khuyến nghị
- Mô hình học sâu phát hiện và nhận diện mã container áp dụng trong vận hành cảng thông minh
- Phát hiện lỗ hổng mã nguồn theo hướng tiếp cận học sâu
- Nghiên cứu, thiết kế và kiểm tra thuật toán mã hóa GIFT-128-bit
- Xây dựng chương trình tính toán động lực học động cơ đốt trong bốn kỳ