Data augmentation analysis of vehicle detection in aerial images
Tác giả: Khang NguyenTóm tắt:
Drones are increasingly used in various application domains including surveillance, agriculture, delivery, search and rescue missions. Object detection in aerial images (captured by drones) gradually gains more interest in computer vision community. However, research activities are still very few in this area due to numerous challenges such as top-view angle, small-scale object, diverse directions, and data imbalance. In this paper, we investigate different data augmentation techniques. Furthermore, we propose combining data augmentation methods to further enhance the performance of the state-of-the-art object detection methods. Extensive experiments on two datasets, namely, AERIAU, and XDUAV, demonstrate that the combination of random cropped and vertical flipped data boosts the performance of object detectors on aerial images.
- Một phương pháp dựa trên mạng nơ-ron tích chập một chiều kết hợp tăng cường dữ liệu để khôi phục dữ liệu bị thiếu trong hệ thống giám sát sức khỏe kết cấu cầu
- Nguy cơ tội phạm sử dụng công nghệ deepfake trong giao dịch ngân hàng
- Xây dựng hệ thống giám sát và điều khiển tự động cho trang trại bò sữa sử dụng công nghệ Internet vạn vật
- Kỹ năng số cho người lao động trong bối cảnh chuyển đổi số
- Nguy cơ tội phạm sử dụng công nghệ deepfake trong giao dịch ngân hàng