A new information theory based algorithm for clustering categorical data
Tác giả: Do Si Truong, Lam Thanh Hien, Nguyen Thanh TungTóm tắt:
In this paper, we review two baseline algorithms for use with categorical data, namely Min-Min Roughness (MMR) and Mean Gain Ratio (MGR), and propose a new algorithm, called Minimum Mean Normalized Variation of Information (MMNVI). MMNVI algorithm uses the Mean Normalized Variation of Information of one attribute concerning another for finding the best clustering attribute, and the entropy of equivalence classes generated by the selected clustering attribute for binary splitting the clustering dataset. Experimental results on real datasets from UCI indicate that the MMNVI algorithm can be used successfully in clustering categorical data. It produces better or equivalent clustering results than the baseline algorithms.
- Máy tính lượng tử, cơ hội và thách thức đối với an toàn an ninh
- Trắc nghiệm thích ứng trên máy tính: Giải pháp mới đánh giá năng lực thí sinh
- Khai thác dữ liệu trong bảo trì thiết bị
- Áp dụng mạng Bayes xây dựng mô hình dự đoán xác suất có điều kiện phức hợp = Applying Bayesian network to build predicting model for complex conditional probabilities
- Tăng tốc dựa vào GPU giải thuật phân lớp chuỗi thời gian gồm tổ hợp bộ phân lớp 1-NN kết hợp với những đô đo khoảng cách không đàn hồi và đàn hồi