A new information theory based algorithm for clustering categorical data
Tác giả: Do Si Truong, Lam Thanh Hien, Nguyen Thanh TungTóm tắt:
In this paper, we review two baseline algorithms for use with categorical data, namely Min-Min Roughness (MMR) and Mean Gain Ratio (MGR), and propose a new algorithm, called Minimum Mean Normalized Variation of Information (MMNVI). MMNVI algorithm uses the Mean Normalized Variation of Information of one attribute concerning another for finding the best clustering attribute, and the entropy of equivalence classes generated by the selected clustering attribute for binary splitting the clustering dataset. Experimental results on real datasets from UCI indicate that the MMNVI algorithm can be used successfully in clustering categorical data. It produces better or equivalent clustering results than the baseline algorithms.
- Hiệu lực của Quyền Hiến định trong lĩnh vực luật tư: Xu thế nghiên cứu trên thế giới và triển vọng ở Việt Nam
- Hoàn thiện pháp luật xử phạt vi phạm hành chính đối với hành vi buôn bán hàng hóa giả mạo nhãn hiệu
- Cảm thức sinh thái trong thơ chữ Hán Việt Nam và Hàn Quốc
- Mờ hóa nhân vật trong Mù lòa của José Saramago và Thành phố bị kết án biến mất của Trần Trọng Vũ từ góc nhìn văn học so sánh
- Bài thơ Tiếng Việt của Lưu Quang Vũ nhìn từ góc độ cấu trúc văn bản