Nghiên cứu đánh giá các mô hình trong chẩn đoán sự có trong hệ thống Chiller
Tác giả: Trần Đình Anh TuấnTóm tắt:
Một mô hình tham số đặc tính chính xác sẽ có vai trò then chốt trong việc nâng cao tỷ lệ chính xác của quá trình phát hiện và chẩn đoán lỗi trong hệ thống chiller. Vì vậy trong nghiên cứu này đã thực hiện so sánh đánh giá 3 phương pháp MLR, GRNN và RBFNN đóng vai trò là mô hình tham số để mô hình hóa các đặc tính hoạt động của chiller. Hai chỉ số thống kê là R2 và RMSE được sử dụng là tiêu chí đánh giá mô hình ở giai đoạn huấn luyện mô hình. Sau đó, kết hợp với phương pháp t-test cùng với quy luật chẩn đoán để nghiên cứu khảo sát và đánh giá khả năng phát hiện chẩn đoán của 3 mô hình. Bộ dữ liệu thực nghiệm thường được sử dụng hầu hết cho hướng nghiên cứu phát hiện chẩn đoán sự cố trong hệ thống chiller của ASHRAE RP-1043 đã được sử dụng trong nghiên cứu này. Nghiên cứu tiến hành khảo sát đánh giá 3 mô hình với 3 trường hợp tiêu biểu là “Chiller hoạt động bình thường” và 2 sự cố thường xuất hiện trong hệ thống chiller “Thiếu môi chất lạnh”, “Tắc thiết bị ngưng tụ”. Kết quả của nghiên cứu cho thấy rằng, RBFNN và GRNN là một chiến lược rất thiết thực và có độ chính xác cao.
- Tác động của nguồn vốn hỗ trợ phát triển chính thức đến lượng khí thải CO2 tại các quốc gia Châu Á : tiếp cận theo ngưỡng đô thị hóa
- Tác động của thực hiện các yếu tố ESG tới hiệu quả hoạt động của ngân hàng thương mại tại khu vực châu Á
- Kinh nghiệm phát triển nền “kinh tế bạc” của Trung Quốc trong bối cảnh già hoá dân số và bài học cho Việt Nam
- Phát triển kinh tế tư nhân ở Việt Nam : đổi mới từ nhận thức đến thực tiễn
- Ứng dụng công nghệ chuỗi khối (Blockchain) trong đổi mới sáng tạo tài chính