Human gait analysis using hybrid convolutional neural networks
Tác giả: Khang Nguyen, Viet V. Nguyen, Nga T. Mai, An H. Nguyen, Anh V. NguyenTóm tắt:
This paper analyzes the combination of IMU sensors and electromyography sensors (EMG) to improve the identification accuracy of human movements. We propose the hybrid convolutional neural network (CNN) and long short-term memory neural network (LSTM) for the human gait analysis problem to achieve an accuracy of 0.9418, better than other models including pure CNN models. By using CNN's image classification advancements, we analyze multivariate time series sensor signals by using a sliding window to transform sensor data into image representation and principal component analysis (PCA) to reduce the data dimensionality. To tackle the dataset imbalance issue, we re-weight our model loss by the inverse effective number of samples in each class. We use the human gait HuGaDB dataset with unique characteristics, for gait analysis.
- Máy tính lượng tử, cơ hội và thách thức đối với an toàn an ninh
- Trắc nghiệm thích ứng trên máy tính: Giải pháp mới đánh giá năng lực thí sinh
- Khai thác dữ liệu trong bảo trì thiết bị
- Áp dụng mạng Bayes xây dựng mô hình dự đoán xác suất có điều kiện phức hợp = Applying Bayesian network to build predicting model for complex conditional probabilities
- Tăng tốc dựa vào GPU giải thuật phân lớp chuỗi thời gian gồm tổ hợp bộ phân lớp 1-NN kết hợp với những đô đo khoảng cách không đàn hồi và đàn hồi