Human gait analysis using hybrid convolutional neural networks
Tác giả: Khang Nguyen, Viet V. Nguyen, Nga T. Mai, An H. Nguyen, Anh V. NguyenTóm tắt:
This paper analyzes the combination of IMU sensors and electromyography sensors (EMG) to improve the identification accuracy of human movements. We propose the hybrid convolutional neural network (CNN) and long short-term memory neural network (LSTM) for the human gait analysis problem to achieve an accuracy of 0.9418, better than other models including pure CNN models. By using CNN's image classification advancements, we analyze multivariate time series sensor signals by using a sliding window to transform sensor data into image representation and principal component analysis (PCA) to reduce the data dimensionality. To tackle the dataset imbalance issue, we re-weight our model loss by the inverse effective number of samples in each class. We use the human gait HuGaDB dataset with unique characteristics, for gait analysis.
- Một phương pháp dựa trên mạng nơ-ron tích chập một chiều kết hợp tăng cường dữ liệu để khôi phục dữ liệu bị thiếu trong hệ thống giám sát sức khỏe kết cấu cầu
- Nguy cơ tội phạm sử dụng công nghệ deepfake trong giao dịch ngân hàng
- Xây dựng hệ thống giám sát và điều khiển tự động cho trang trại bò sữa sử dụng công nghệ Internet vạn vật
- Kỹ năng số cho người lao động trong bối cảnh chuyển đổi số
- Nguy cơ tội phạm sử dụng công nghệ deepfake trong giao dịch ngân hàng