Human gait analysis using hybrid convolutional neural networks
Tác giả: Khang Nguyen, Viet V. Nguyen, Nga T. Mai, An H. Nguyen, Anh V. NguyenTóm tắt:
This paper analyzes the combination of IMU sensors and electromyography sensors (EMG) to improve the identification accuracy of human movements. We propose the hybrid convolutional neural network (CNN) and long short-term memory neural network (LSTM) for the human gait analysis problem to achieve an accuracy of 0.9418, better than other models including pure CNN models. By using CNN's image classification advancements, we analyze multivariate time series sensor signals by using a sliding window to transform sensor data into image representation and principal component analysis (PCA) to reduce the data dimensionality. To tackle the dataset imbalance issue, we re-weight our model loss by the inverse effective number of samples in each class. We use the human gait HuGaDB dataset with unique characteristics, for gait analysis.
- Constrained optimization using swarm intelligence integrated with Deb’s feasibility rules developed in Python = Giải bài toán tối ưu hóa ràng buộc sử dụng trí tuệ bầy đàn kết hợp quy tắc khả thi của Deb được phát triển bằng Python
- Particle Swarm Optimization using ε constraint-handling method developed in Python = Thuật toán tối ưu hóa bầy đàn sử dụng phương pháp xử lý ràng buộc ε được phát triển với Python
- Solving constrained optimization tasks in civil engineering using ε- Differential Evolution developed with Visual C#. NET = Giải các bài toán tối ưu hóa có ràng buộc trong ngành xây dựng sử dụng thuật toán ε - tiến hóa vi phân được phát triển với ngôn ngữ
- Optimizing cantilever retaining wall design using feasibility rule-based evolutionary algorithm developed with Visual C# .NET = Tối ưu hóa thiết kế tường chắn đất sử dụng thuật toán tiến hóa được kết hợp quy tắc khả thi và phát triển với ngôn ngữ C# .NET
- IFC5 : kỳ vọng về cuộc cách mạng trao đổi thông tin trong xây dựng kỹ thuật số





